总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以有效锻炼我们的语言组织能力,不如立即行动起来写一份总结吧。那么总结要注意有什么内容呢?以下是小编收集整理的人教版七年级下册数学教学总结,欢迎大家分享。

初中数学二元一次方程组教案 篇1

教学目标:

通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型

重点:

让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题

难点:

寻找等量关系

教学过程:

看一看:课本99页探究2

问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?

2、“甲、乙两种作物的总产量比为3:4”是什么意思?

3、本题中有哪些等量关系?

提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?

思考:这块地还可以怎样分?

练一练

一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:

农作物品种每公顷需劳动力每公顷需投入奖金

水稻4人1万元

棉花8人1万元

蔬菜5人2万元

已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的'资金正好够用?

问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?

教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。公路运价为1、5元/(吨?千米),铁路运价为1、2元/(吨?千米),这两次运输共支出公路运费15000元,铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?

初中数学二元一次方程组教案 篇2

教学目标

1.使学生会用代入消元法解二元一次方程组;

2.理解代入消元法的基本思想体现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;

3.在本节课的教学过程中,逐步渗透朴素的辩证唯物主义思想.

教学重点和难点

重点:用代入法解二元一次方程组.

难点:代入消元法的基本思想.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1.谁能造一个二元一次方程组?为什么你造的方程组是二元一次方程组?

2.谁能知道上述方程组(指学生提出的方程组)的解是什么?什么叫二元一次方程组的解?

3.上节课我们提出了鸡兔同笼问题:(投影)一个农民有若干只鸡和兔子,它们共有50个头和140只脚,问鸡和兔子各有多少?设农民有x只鸡,y只兔,则得到二元一次方程组

对于列出的这个二元一次方程组,我们如何求出它的解呢?(学生思考)教师引导并提出问题:若设有x只鸡,则兔子就有(50-x)只,依题意,得2x+4(50-x)= 140从而可解得,x=30,50-x=20,使问题得解.

问题:从上面一元一次方程解法过程中,你能得出二元一次方程组串问题,进一步引导学生找出它的解法) (1)在一元一次方程解法中,列方程时所用的等量关系是什么?(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系是否相同?

(4)能否由方程组中的方程②求解该问题呢?

(5)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?(以上问题,要求学生独立思考,想出消元的方法)结合学生的回答,教师作出讲解.

由方程①可得y=50-x③,即兔子数y用鸡数x的代数式50-x表示,由于方程②中的y与方程①中的y都表示兔子的只数,故可以把方程②中的y用(50-x)来代换,即把方程③代入方程②中,得2x+4(50-x)=140,解得x=30.

将x=30代入方程③,得y=20.

即鸡有30只,兔有20只.

本节课,我们来学习二元一次方程组的解法.

二、讲授新课例1解方程组

分析:若此方程组有解,则这两个方程中同一个未知数就应取相同的值.因此,方程②中的y就可用方程①中的表示y的代数式来代替.解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3.把x=3代入①,得y=-2.

(本题应以教师讲解为主,并板书,同时教师在最后应提醒学生,与解一元一次方程一样,要判断运算的结果是否正确,需检验.其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的`左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)教师讲解完例1后,结合板书,就本题解法及步骤提出以下问题:1.方程①代入哪一个方程?其目的是什么?2.为什么能代入?

3.只求出一个未知数的值,方程组解完了吗?

4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?在学生回答完上述问题的基础上,教师指出:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法.例2解方程组

分析:例1是用y=1-x直接代入②的.例2的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数),所以不能直接代入.为此,我们需要想办法创造条件,把一个方程变形为用含x的代数式表示y(或含y的代数式表示x).那么选用哪个方程变形较简便呢?通过观察,发现方程②中x的系数为1,因此,可先将方程②变形,用含有y的代数式表示x,再代入方程①求解.解:由②,得x=8-3y,③把③代入①,得(问:能否代入②中?)

2(8-3y)+5y=-21,-y=-37,所以y=37.

(问:本题解完了吗?把y=37代入哪个方程求x较简单?)把y=37代入③,得x= 8-3×37,所以x=-103.

(本题可由一名学生口述,教师板书完成)

三、课堂练习(投影)用代入法解下列方程组:

四、师生共同小结

在与学生共同回顾了本节课所学内容的基础上,教师着重指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即使“代入”成为可能.而代入的目的就是为了消元,使二元方程转化为一元方程,从而使问题最终得到解决.

五、作业

用代入法解下列方程组:

5.x+3y=3x+2y=7.

初中数学二元一次方程组教案 篇3

重点、难点分析

本节的教学重点是使学生学会用代入法,教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便。

解二元一次方程组的关键在于消元,即将“二元”转化为“一元”,我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解。

教法建议

1.关于检验方程组的解的问题,教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等。”教学时要强调“原方程组”和“每一个”这两点,检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误,检验可以口算或在草稿纸上演算,教科书中没有写出。

2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”,我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解,早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性。

3.教师讲解例题时要注意由简到繁,由易到难,逐步加深,随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易。这样不仅可以求解迅速,而且可以减少错误。

素质教育目标

(一)知识教学点

1.掌握用代入法解二元一次方程组的步骤。

2.熟练运用代入法解简单的二元一次方程组。

(二)能力训练点

1.培养学生的分析能力,能迅速在所给的.二元一次方程组中,选择一个系数较简单的方程进行变形。

2.训练学生的运算技巧,养成检验的习惯。

(三)德育渗透点

消元,化未知为已知的数学思想。

(四)美育渗透点

通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美。

学法引导

1.教学方法:引导发现法、练习法,尝试指导法。

2.学生学法:在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程当中始终应抓住消元的思想方法。

重点、难点、疑点及解决办法

(一)重点

使学生会用代入法解二元一次方程组。

(二)难点

灵活运用代入法的技巧。

(三)疑点

如何“消元”,把“二元”转化为“一元”。

(四)解决办法

一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形:

课时安排

一课时。

教具学具准备

电脑或投影仪、自制胶片。

师生互动活动设计

1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单。

2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法。

3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律。

教学步骤

(一)明确目标

本节课我们将学习用代入法求二元一次方程组的解

(二)整体感知

从复习用一个未知量表达另一个未知量的方法,从而导入运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法

(三)教学步骤

1.创设情境,复习导入

通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解,那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习。

这样导入,可以激发学生的求知欲。

2.探索新知,讲授新课

香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演。

设买了香蕉千克,那么苹果买了千克,根据题意,得

设买了香蕉千克,买了苹果千克,得

上面的一元一次方程我们会解,能否把二元一次方程组转化为一元一次方程呢,由方程①可以得到③,把方程②中的转换成,也就是把方程③代入方程②,就可以得到,这样,我们就把二元一次方程组转化成了一元一次方程,由这个方程就可以求出了。

学生活动:小组讨论,选代表发言,教师进行指导,纠正后归纳:设法消去一个未知数,把二元一次方程组转化为一元一次方程。

例1解方程组

(1)观察上面的方程组,应该如何消元?(把①代入②)

(2)把①代入②后可消掉,得到关于的一元一次方程,求出

(3)求出后代入哪个方程中求比较简单?(①)

学生活动:依次回答问题后,教师板书

如何检验得到的结果是否正确?

学生活动:口答检验。

教师:要把所得结果分别代入原方程组的每一个方程中

给出例1后提出的三个问题,恰好是学生的思维过程,明确了解题思路;教师板演例1,规范了解二元一次方程组的解题格式;通过检验,可使学生养成严谨认真的学习习惯

例2解方程组

要把某个方程化成如例1中方程①的形式后,代入另一个方程中才能消元,方程②中的系数是1,比较简单,因此,可以先将方程②变形,用含的代数式表示,再代入方程①求解

学生活动:尝试完成例2

教师巡视指导,发现并纠正学生的问题,把书写过程规范化

检验后,师生共同讨论:

(1)由②得到③后,再代入②可以吗?(不可以)为什么?(得到的是恒等式,不能求解)

(2)把代入①或②可以求出吗?(可以)代入③有什么好处?(运算简便)

学生活动:根据例1、例2的解题过程,尝试总结用代入法解二元一次方程组的一般步骤,讨论后选代表发言,之后,看课本第12页,用几个字概括每个步骤。

(四)总结、扩展

1.解二元一次方程组的思想:

2.用代入法解二元一次方程组的步骤。

3.用代入法解二元一次方程组的技巧:①变形的技巧②代入的技巧。

通过这节课的学习,我们要熟练运用代入法解二元一次方程组,并能检验结果是否正确。

初中数学二元一次方程组教案 篇4

时间过得真快,一学期又结束了,下面是我个人对这一学期的教学工作总结:

一、政治思想素质

平时积极参加学校组织的各类集体活动,认真学习学校下达的上级文件,关心国内外大事,注重政治理论的学习。配合组里搞好教研活动,每周按时参加升旗仪式。服从安排,保持与决策层的高度一致性。

二、业务能力

1、教学能力,作为一名教师,我始终把“教书育人、为人师表”作为已任,把成为优秀的教师作为自己的目标,孜孜追求。任现职以来,我要求自己不断增强业务素养,深入钻研教材,认真进行教学研究。教学中,我坚决贯彻因材施教的原则,始终把学生的`“学”放在教学的核心位置上。在教学方法的设计上,突出落实激发学生的主体意识,激发学生的求知欲望。每一节课都要设计学生参与的情境,来引导和训练学生学习。

2、班主任工作工作总结,教书育人是教师的天职。在班主任工作中,我每天早来晚走、周六周日也难得休息,每接一个班,都从整顿班风入手,培养学生的集体荣誉感,与学生建立起“师生+朋友”的关系,在日常管理上坚持“三到位”(课前两分钟到位、课间操到位、自习课到位),使班级工作顺利开展。

3、教育科研教师的生命力来自教育科研,教师的未来和未来的教师,都将与教育科研联系起来。

4、学生竞赛辅导多名学生参加数学竞赛并获奖。

5、继续教育一直以来多次参加各类机构的培训,并获得证书。

三、今后的设想

在今后的工作中,我将采取各种方式方法,寻找有效途径,提高教学效率,努力使自己成为一名优秀的教师。不管能否晋级,今后我仍将一如既往,以的热情、全部的精力投身到教育事业中去,无愧于教师的称号。

以上是本人任现职以来思想、工作方面的总结,虽然取得了一定的工作成效,但我还要加倍努力,当然其中也许难免有些不足,我一定会在今后的工作中尽力克服,并不断地完善自我,努力使自己成为一名优秀的人民教师。

初中数学二元一次方程组教案 篇5

教学目标:

1使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用

2通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性

3体会列方程组比列一元一次方程容易

4进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力

重点与难点:

重点:能根据题意列二元一次方程组;根据题意找出等量关系;

难点:正确发找出问题中的两个等量关系

课前自主学习

1.列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的()

2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:

(1)方程两边表示的是()量

(2)同类量的单位要()

(3)方程两边的数值要相符。

3.列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否( ),更重要的是要检验所求得的结果是否( )

4.一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有( ),兔有( )

新课探究

看一看

问题:

1题中有哪些已知量?哪些未知量?

2题中等量关系有哪些?

3如何解这个应用题?

本题的等量关系是(1)()

(2)()

解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg

根据题意列方程,得

解这个方程组得

答:每只母牛和每只小牛1天各需用饲料为( )和( ),饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算()出入。(“有”或“没有”)

练一练:

1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?

2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?

3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?

4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?

小结

用方程组解应用题的一般步骤是什么?

8.3实际问题与二元一次方程组(2)

教学目标:

1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;

2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;

3、学会开放性地寻求设计方案,培养分析问题,解决问题的能力

重点与难点:

重点:能根据题意列二元一次方程组;根据题意找出等量关系;

难点:正确发找出问题中的.两个等量关系

课前自主学习

1.甲乙两人的年收入之比为4:3,支出之比为8:5,一年间两人各存了5000元(两人剩余的钱都存入了银行),则甲乙两人的年收入分别为()元和()元。

2.在一堆球中,篮球与排球之比为赞助单位又送来篮球队10个排球10个,这时篮球与排球的数量之比为27:40,则原有篮球()个,排球()个。

3.现在长为18米的钢材,要据成10段,每段长只能为1米或2米,则这个问题中的等量关系是(1)1米的段数+()=10(2)1米的钢材总长+()=18

初中数学二元一次方程组教案 篇6

一、尊重学生,还学生学习的自由,提高学生的学习兴趣,使学生主动参。

要与学习,必须使学生对学习有兴趣。兴趣是一个人前进的动力,是永不枯竭的动源泉。要使学生有兴趣,必须留给学生学习的自由。自由活动是人发展的内在依据,学生的学习也应如此。学生并不只受教于老师,而且自己也独立学习。学生应当是主动的学习者。许多教育事实也反映出,真正的学习并不是由教师传授给学生,而是出自学生本身,我们应该让学生自发地主动地学习,留给学生充分的自由,让学生自己找到并发现、纠正自己的。如果我们把每种事情都教给学生或者规定他们按固定的程序完成,就会妨碍他们的主动参与和自主发现,妨碍他们的发展。

比如,《应用题打折销售》这一节,如果课堂上就单纯地出示例题,然后分析题意,给出解答过程,接着再模仿练习。最后帮学生总结出解决这类问题的方法和技巧。那么这类问题虽然与实际生活相关,但学生却未必有多大兴趣。假若我们设计一个课堂活动,让学生模拟商店的从进货、定价、促销到卖出的全过程,学生一定会非常积极踊跃,乐于去对打折销售的过程进行分析、计算。而且在此过程中,学生也自然会联想到各个环节中可能出现的问题,比如标价与销量的关系,进价、标价、售价与打折和利润之间的关系,这样需要学生巩固、提高的知识可能自然就解决了。

二、发挥学生的主体作用,引导学生积极主动参与教学过程

由于数学教学的本质是数学思维活动的展开,因此数学课堂上学生的主要活动是通过动脑、动手、动口参与数学思维活动。我们不仅要鼓励学生参与,而且要引导学生主动参与,才能使学生主体性得到充分的发挥和发展,只有这样,才能不断提高数学活动的开放度。这就要求我们在教学过程中为学生创造良好的主动参与条件,提供充分的参与机会,具体应注意以下几点:

(1)巧创激趣情境,激发学生的学习兴趣。

教学实践证明,情心创设各种教学情境,能够激发学生的学习动机和好奇心,培养学生的求知欲,调动学生学习的积极性和主动性,引导学生形成良好的意识倾向,促使学生主动地参与。

(2)运用探究式教学,使学生主动参与。

教学中,在以教师为主导的前提下,坚持学生是探究的主体,根据教材提供的学习材料,伴随知识的发生、形成、发展的全过程进行探究活动,教师着力引导学生多思考、多探索,让学生学会发现问题、提出问题、分析问题、解决问题,只有这样,才能使学生品尝到自己发现的乐趣,才能激起他们强烈的求知欲和创造欲。只有达到这样的境地,才会真正实现学生的主动参与。

(3)运用变式教学,确保其参与教学活动的持续热情。

变式教学是对数学中的定理和命题进行不同角度、不同层次、不同情形、不同背景的变式,以暴露问题的`本质特征,揭示不同知识点间的内在联系的一种教学设计方法。通过变式教学,使一题多用,多题重组,常给人以新鲜感,能唤起学生的好奇心和求知欲,促使其产生主动参与的动力,保持其参与教学过程的兴趣和热情

三、交流让学生分享快乐和共享资源

学生已有的生活经验、活动经验以及原有的生活背景,是良好的课程资源。在“图形认识初步”这节课中,有一道题问一个正方体的盒子有几个不同的展开面,我想,如果直接给学生答案有11种基本图形,他们不但不明白为什么,也想象不出来这11种基本图形会是怎样形成的,于是我让同学们从家带来正方体图形,让学生在课堂上进行剪,彼此间的交流,实现了他们对立体图形关键特性的理解和认识,大家共同分享发现和成功的快乐,共享彼此的资源。

以上就是我的教学心得,在教学中还有很多不足,在以后的教学中要继续努力,迈上新的台阶。

初中数学二元一次方程组教案 篇7

一、教学目标

1、知识与技能目标:

学生能理解二元一次方程组的概念,掌握消元法(代入法和加减法)解二元一次方程组的方法。

能熟练运用消元法解决实际问题,判断解的合理性,并能根据题目特点灵活选择合适的消元方法。

2、过程与方法目标:

通过观察、分析、讨论、实践等环节,培养学生独立思考和合作学习的能力。

通过解决实际问题,提高学生运用数学知识解决实际问题的能力。

3、情感态度价值观目标:

培养学生严谨的逻辑思维习惯和对数学学习的兴趣。

让学生体验到数学的简洁美和实用性,增强学以致用的意识。

二、教学重点与难点

1、重点:

消元法(代入法和加减法)解二元一次方程组的步骤与方法。

2、难点:

根据方程组的.特点灵活选择消元方法,以及对方程组解的合理性判断。

三、教学过程

1、引入新课:

复习回顾:提问学生关于一元一次方程的解法及意义,引出课题——“当面临两个未知数、两个方程时,如何求解?”

情境创设:给出一个涉及两个未知数的实际问题(如:甲乙两人同时从两地出发相向而行,已知各自速度和相遇时间,求两地距离及各自走过的路程),引导学生列出对应的二元一次方程组,激发学生求解欲望。

2、新课讲授:

环节一:二元一次方程组的概念

定义讲解:含有两个未知数,每个方程都是整式方程且一次项系数不为零,这样的两个方程所组成的方程组称为二元一次方程组。

3、举例说明,加深理解。

环节二:消元法解二元一次方程组

1)代入法:

(1)讲解思路:通过其中一个方程将一个未知数用另一个未知数表示,再代入另一个方程,转化为一元一次方程求解。

(2)步骤演示:以具体方程组为例,详细展示代入法解题步骤。

(3)学生练习:给出一组二元一次方程组,让学生尝试用代入法解题,教师巡视指导。

2)加减法:

(1)讲解思路:通过适当变形,使两个方程中同一未知数的系数相等或互为相反数,然后将两个方程相加或相减,消去一个未知数,转化为一元一次方程求解。

(2)步骤演示:以具体方程组为例,详细展示加减法解题步骤。

(3)学生练习:给出一组二元一次方程组,让学生尝试用加减法解题,教师巡视指导。

环节三:选择合适消元方法与解的合理性判断

比较代入法与加减法:引导学生对比两种方法的适用情况,理解何时选择哪种方法更简便。例如:当一个未知数系数较简单或另一未知数系数为1时,代入法更为便捷;当两个未知数系数有明显倍数关系或互为相反数时,加减法更为适宜。

解的合理性判断:讲解如何将求得的解代回原方程组验证,强调解必须使方程组中每一个方程都成立。

四、巩固练习与课堂小结

1、巩固练习:

布置几道不同类型的二元一次方程组题目,要求学生自主选择合适的消元方法解题,并进行解的合理性判断。

2、课堂小结:

师生共同回顾本节课学习内容,强调二元一次方程组的概念、消元法(代入法和加减法)的步骤与方法选择,以及解的合理性判断。

3、作业布置:

设计适量课后习题,涵盖本节所学知识点,供学生课后巩固练习。

五、教学反思与评价

课后对教学过程进行反思,关注学生对消元法的理解程度、解题正确率及方法选择的灵活性,及时调整教学策略,确保学生扎实掌握二元一次方程组的解法。同时,可通过课堂观察、作业批改、个别访谈等方式对学生的学习情况进行评价,了解学生对本节内容的掌握情况,为后续教学提供参考。

初中数学二元一次方程组教案 篇8

一、学情分析:

学生能够正确解方程(组),掌握了一次函数及其图像的基础知识,能够根据已知条件准确画出一次函数图象,已经具备了函数的初步思想,在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.

二、 学习目标:

本节课通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:

1.初步理解二元一次方程和一次函数两种数学模型之间的关系;

2.掌握二元一次方程组和对应的两条直线交点之间的关系,通过对两种模型关系的理解解决问题;

3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学模型间的联系.

教学重点

二元一次方程和一次函数的关系,二元一次方程组和对应的两条直线交点之间的关系;

教学难点

通过对数学模型关系的探究发展学生数形结合和数学转化的思想意识.

四、教法学法

1.教法学法

启发引导与自主探索相结合.

2.课前准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

五、教学过程

第一环节: 探究二元一次方程和一次函数两种数学模型之间的关系

1. 某水箱有5吨水,若用水管向外排水,每小时排水1吨,则X小时后还剩余Y吨水.

(1) 请找出自变量和因变量

(2) 你能列出X,Y的关系式吗?

(3) X,Y的取值范围是什么?

(4) 在平面直角坐标系中画出这个函数的图形.(注意XY的取值范围).

2.(1)方程x+y=5的解有多少个?你能写出这个方程的几个解吗?

(2).在直角坐标系内分别描出以这些解为坐标的点,它们在一次函数Y=5-X的图象上吗?

(3).在一次函数y=?x?5的图像上任取一点,它的坐标适合方程x+y=5吗?

(4).以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=?x?5的图像相同吗?

x+y=5与 y=?x?5表示的关系相同

一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是一条直线.

目的:通过设置问题情景,让学生感受方程x+y=5和一次函数y=?x?5相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.

前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.

第二环节 自主探索方程组与一次函数两种数学模型之间的关系

探究方程与函数的相互转化

1.两个一次函数图象的交点坐标是相应的二元

一次方程组的解

(1)一次函数y=5-x图象上点的坐标适合方程x+y=5,那么一次函数y=2x-1图象上点的坐标适合哪个方程?

(2)两个函数的交点坐标适合哪个方程?

?x?y?5(3).解方程组?验证一下你的发现。 2x?y?1?

练习:随堂练习1 。巩固由一次函数的交点坐标找相应的二元一次方程组的解。

2.二元一次方程组的'解是相应的两个一次函数图象的交点坐标。

?x?y?2(1)解?

?2x?y?5(2)以方程x+y=2

(3)以方程2x+y=5(4)方程组的解为坐标的点在图象上是哪个点?

(5目的:通过自主探索,使学生初步体会“数”(二元一次方程组的解)与“形”(两条直线)两种模型之间的对应关系,

由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了“数”的问题可以转化为“形”来处理,反之“形”的问题可以转化成“数”来处理,培养了学生的创新意识和变式能力.

练习:知识技能1。巩固由方程组的解求相应的一次函数的交点坐标。更深入的体会二元一次方程组的解与一次函数交点坐标之间的对应关系。

第三环节模型应用

1.某公司要印制产品宣传材料.

1500元制版费. 甲印刷厂:每份材料收1元印制费, 另收 乙印刷厂:每份材料收2.5元印制费, 不收制版费.若公司要印制x份宣传材料,y甲表示甲印刷厂的费用,y乙表示乙

印刷厂的费用。

(1) 请分别表示出两个印刷厂费用与X的关系式。

(2) 在同一直角坐标系中画出函数的图象。

(3) 如何根据印刷材料的份数选择印刷厂比较合算?

第四环节 模型特例

想一想

内容:在同一直角坐标系内, 一次函数y = x + 1 和 y = x - 2 的图象(教材

?x?y??1124页图5-2)有怎样的位置关系?方程组?解的情况如何?你发现了什x?y?2?

么?

二元一次方程的解和相应的两条直线的关系2.

(1)观察发现直线平行无交点;

(2)小组研究计算发现方程组无解;

(3)从侧面验证了两直线有交点,对应的方程组有解,反之也成立;

(4)归纳小结:两平行直线的k相等;方程组中两方程未知数的系数对应成比例方程组无解。

目的:进一步揭示“数”与“形”转化关系.通过想一想,将两直线的另一种位置关系:平行与方程组无解相结合,这是对第二环节的有益补充。体现了从一般到特殊的的思想方法,有利于培养学生全面考虑问题的习惯.

进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.进一步挖掘出两直线平行与k的关系。

效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.

第五环节 课堂小结

内容:以“问题串”的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一次函数的图像的关系;

以二元一次方程的解为坐标的点都在相应的函数图像上;

一次函数图像上的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

方程组的解是对应的两条直线的交点坐标;

两条直线的交点坐标是对应的方程组的解;

第六环节 作业布置

习题5.7

初中数学二元一次方程组教案 篇9

二元一次方程

§11.1 二元一次方程

【教学目标】

【知识目标】

了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。

【能力目标】jzd365.com

通过讨论和练习,进一步培养学生的观察、比较、分析的能力。

【情感目标】

通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。

【重点】

二元一次方程组的含义

【难点】

判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。

【教学过程】

一、引入、实物投影

1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的'包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?

2、请每个学习小组讨论(讨论2分钟,然后发言)

这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍, 得方程:x+1=2(y-1)

师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少? (含有两个未知数,并且所含未知数项的次数是1)

师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程

注意:这个定义有两个地方要注意①、含有两个未知数,②、含未知数的次数是一次

练习(投影)

下列方程有哪些是二元一次方程

+2y=1 xy+x=1 3x-=5 x2-2=3x

xy=1 2x(y+1)=c 2x-y=1 x+y=0

二、议一议、

师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?

师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成

x-y=2

x+1=2(y-1)

像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

如: 2x+3y=3 5x+3y=8

x-3y=0 x+y=8

三、做一做、

1、 x=6,y=2适合方程x+y=8吗?x=5,y=3呢?x=4,y=4呢?你还能找到其他x,y值适合x+y=8方程吗?

2、 X=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?

你能找到一组值x,y同时适合方程x+y=8和5x+3y=34吗?

x=6,y=2是方程x+y=8的一个解,记作 x=6 同样, x=5

y=2 y=3

也是方程x+y=8的一个解,同时 x=5 又是方程5x+3y=34的一个解,

y=3

四、随堂练习(P103)

五、小结:

1、 含有两未知数,并且含有未知数的项的次数是一次的整式方程叫做二元一次方程。

2、 二元一次方程的解是一个互相关联的两个数值,它有无数个解。

3、 含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值。

六、教后感:

七、自备部分

初中数学二元一次方程组教案 篇10

一、教学目标

1.知识与技能目标

学生理解并掌握解二元一次方程组的消元法(代入法和加减消元法),能正确选用合适的方法解简单的二元一次方程组。

能够运用消元法解决实际问题,提高计算能力和逻辑推理能力。

2.过程与方法目标

通过观察、分析和实践操作,让学生体验消元法的解题过程,培养他们主动探究、合作交流的学习方式。

学会通过画图辅助理解消元过程,发展数形结合的数学思想。

3.情感态度价值观目标

激发学生对数学问题解决的热情,体验到数学的实用性与美感,培养严谨认真的'学习态度和解决问题的耐心。

二、教学重难点

重点:熟练掌握代入法和加减消元法解二元一次方程组的步骤和方法。

难点:灵活选择合适的消元方法,以及在消元过程中涉及到的等式的变换规则和运算技巧。

三、教学过程

1.复习导入

复习回顾一元一次方程的解法,引导学生思考如何将二元转化为一元,引入课题“消元法解二元一次方程组”。

2.新课讲解

代入法:给出具体方程组实例,详细讲解如何通过其中一个方程解出一个未知数,然后将其代入另一个方程求解另一未知数的步骤和理由。

加减消元法:通过实例展示如何通过等式两边同时相加或相减,使其中一个未知数的系数变为0,进而求解。讲解过程中强调等式性质的运用和乘除时需要注意的符号变化。

3.课堂活动

例题演示:教师选择代表性强的例题,引导学生跟随解题步骤,分析消元过程,并提醒学生注意关键点和易错点。

学生实践:设计课堂练习,让学生分组合作或独立完成,教师巡视指导,发现问题及时答疑解惑。

4.知识巩固

设计多层次的课后习题,包括基础练习和提高练习,以巩固学生对消元法的理解和运用。

5.课堂小结

总结本节课所学的消元法解二元一次方程组的方法,梳理思路,强调解题步骤和注意事项。

四、课后作业

安排适量的课后作业,包括课本习题和适当的拓展题型,进一步巩固和深化学生对消元法的理解和应用。

五、教学评价与反馈

通过课堂表现、作业批改和测试成绩等方式,对学生掌握消元法解二元一次方程组的情况进行全面评价,及时给予反馈和个别辅导。本节课的教学设计旨在通过理论与实践相结合的方式,帮助学生理解和掌握解二元一次方程组的方法,提升他们的数学思维能力和解决实际问题的能力。