作为一名教学工作者,总归要编写教案,教案是备课向课堂教学转化的关节点。那么写教案需要注意哪些问题呢?以下是小编为大家整理的《一元二次方程》的优秀教案(通用6篇),仅供参考,大家一起来看看吧。

初中数学二元一次方程教案第一课时 篇1

教学目标:

1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型

2、理解什么是一元二次方程及一元二次方程的一般形式。

3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

教学重点

1、一元二次方程及其它有关的概念。

2、利用实际问题建立一元二次方程的数学模型。

教学难点

1、建立一元二次方程实际问题的数学模型.

2、把一元二次方程化为一般形式

教学方法:指导自学,自主探究

课时:第一课时

教学过程:

(学生通过导学提纲,了解本节课自己应该掌握的内容)

一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)

1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。

2、你发现上述三个方程有什么共同特点?

你能把这些特点用一个方程概括出来吗?

3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念

你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?

二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)

1、下列哪些是一元二次方程?哪些不是?

①②③

④x2+2x-3=1+x2 ⑤ax2+bx+c=0

2、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)

3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?

4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?

5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?

三、反思:(学生,进一步加深本节课所学内容)

这节课你学到了什么?

四、自查自省:(通过当堂小测,及时发现问题,及时应对)

1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个

(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。

3、关于x的方程(m2-4)x2+(m+2)x+2m+3=0,当m__________时,是一元二次方程;当m__________时,是一元一次方程.

作业:必做题:习题7.1

选做题:(挑战自我)p41随堂练习

1、已知关于的方程是一元二次方程,则为何值?

2、.当m为何值时,方程(m+1)x+1+27mx+5=0是关x于的一元二次方程?

3、关于的一元二次方程(m-1)x2+x+m2-1=0有一根为,则的值多少?

4、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种(如图),根据两种设计各列出方程,求图中道路的宽分别是多少,使图(1),(2)的草坪面积为540米2.?

(1)(2)

板书设计:一元二次方程

定义:一个未知数整式方程可以化为

一般形式ax2+bx+c=0(a、b、c为常数,a≠0)

二次项一次项常数项

系数为a系数为b

教学反思

这次我参加了区里组织的优质

课比赛,这次的优质课采用市里要求的1/3模式,这对于我们来说具有一定的挑战性。所谓“1/3模式”,就是把课堂教学时间大致分为3个部分,1/3的时间个人自主学习,1/3的时间小组合作学习,1/3的时间全班交流讨论。在1/3模式中,整个教学过程由教师和学生共同参与,每个环节1/3的时间只是大致的划分,可根据学习内容灵活安排。这就对教师提出了较高的要求。

首先要准备好学案。学案就是学生学习的依据。在学案里,教师要提出明确的学习要求。学习要求可包括以下方面:完成学习任务的时间、学习内容的范围、完成学习任务所要达到的程度、自主学习成果展现的形式等。这就要求教师要提前考虑周全,对于学生学习的要求要一次性提出,内容上有梯度。学生自主学习时,教师要深入学生当中,观察学生的学习状况,检查学习任务完成的情况,有针对性的指导和帮助教师对自主学习方法和途径的指导要适度,既要满足学生完成学习任务的需要,又不能挤占学生自主探究的空间

其次,学习氛围是合作学习成功的关键之一,教师要营造安全的心理环境、充裕的时空环境、热情的帮助环境、真诚的激励环境,只就要求教师在语言上也要有较高水平,会发动学生,会调动学生的积极性,让课堂气氛活跃起来,让学生充分发挥自己的水平。

再是,由于课堂上主要是以学生为主。这就要求教师尽量少讲,要充当好组织者、引导者、倾听者的角色,不要急于发表自己的观点,只要学生能讲的教师就不要讲,要避免因为教师呈现自己的观点而打破学生的讨论。学生说完的东西,如果没有问题,教师就不要重复。教师对学习内容要点的讲解要有的放矢,能起到画龙点睛的作用。要在学生原有的水平上进行提升,有助于学生加深对知识的理解。

我们只有在教学中不断的学习,不断的改进自己,才能保证我们的课堂很精彩,是名副其实的优质课。

初中数学二元一次方程教案第一课时 篇2

第一课时

素质教育目标

(一)知识教学点

1.使学生初步了解统计知识是应用广泛的数学内容 .

2.了解平均数的意义,会计算一组数据的平均数 .

3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数 .

(二)能力训练点

培养学生的观察能力、计算能力 .

(三)德育渗透点

1.培养学生认真、耐心、细致的学习态度和学习习惯 .

2.渗透数学来源于实践,反地来又作用于实践的观点 .

(四)美育渗透点

通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .

重点·难点·疑点及解决办法

1.教学重点:平均数的概念及其计算 .

2.教学难点:平均数的简化计算 .

3.教学疑点:平均数简化公式的应用,a如何选择 .

4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .

教学步骤

(一)明确目标

在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)

为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:

甲 7 8 6 8 6 5 9 10 7 4

乙 9 5 7 8 7 6 8 6 7 7

1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?

教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.

对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.

(二)整体感知

解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.

(三)教学过程

这节课我们首先来学习平均数.

1.(出示幻灯片)请同学看下面问题:

某班第一小组一次数学测验的成绩如下:

86 91 100 72 93 89 90 85 75 95

这个小组的平均成绩是多少?

教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识 .

2.平均数的概念及计算公式

一般地,如果有n个数 .

那么 ①

叫做这n个数的平均数, 读作“x拨” .

这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .

3.平均数计算公式①的应用

例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):

-6,-5,-7,-6,-4,-5,-7,-8,-7

求它们的平均气温 .

让学生动手计算,以巩固平均数计算公式(一名学生板演)

教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同 .

例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):

210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215

计算它们的平均质量 .(用投影仪打出)

引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .

教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .

学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .

讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同 .

通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .

3.推导公式②

一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到,

那么 ,

因此,

即 ②

为了加深学生对公式②的认识,再让学生指出例2的 、 、 各是什么?(学生回答)

课堂练习:

教材P148中~P149中1,2,3

(四)总结、扩展

知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .

2.求n个数据的平均数的公式① .

3.平均数的简化计算公式② .这个公式很重要,要学会运用 .

方法小结:通过本节课我们学到了示一组数据平均数的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .

八、布置作业

教材P153中1、2、3、4 .

初中数学二元一次方程教案第一课时 篇3

一、教材的地位与作用

《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。

二、教学目标

(一)知识与技能:

1.了解二元一次方程概念;

2.了解二元一次方程的解的概念和解的不唯一性;

3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

(二)数学思考:

体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。

(三)问题解决:

初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。

(四)情感态度:

培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。

三、教学重点与难点

教学重点:二元一次方程及其解的概念。

教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

四、教法与学法分析

教法:情境教学法、比较教学法、阅读教学法。

学法:阅读、比较、探究的学习方式。

五、教学过程

1.创设情境,引入新课

从学生熟悉的姚明受伤事件引入。

师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。

(1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?

(2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗?

设姚明投进了x个两分球,罚进了y个球,可列出方程。

(3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗?

设易建联投进了x个两分球,y个三分球,可列出方程。

师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗?

从而揭示课题。

(设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”“乐学”。)(M.jk251.CoM 教师范文大全)

2.探索交流,汲取新知

概念思辨,归纳二元一次方程的特征

师:那到底什么叫二元一次方程?(学生思考后回答)

师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)

师:根据概念,你觉得二元一次方程应具备哪几个特征?

活动:你自己构造一个二元一次方程。

快速判断:下列式子中哪些是二元一次方程?

①x2+y=0②y=2x+

4③2x+1=2x ④ab+b=4

(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的.思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。)

二元一次方程解的概念

师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?

师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法)

使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。)

二元一次方程解的不唯一性

对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗?师:这些解你们是如何算出来的?

(设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。)如何去求二元一次方程的解

例:已知方程3x+2y=10,

(1)当x=2时,求所对应的y的值;

(2)取一个你自己喜欢的数作为x的值,求所对应的y的值;

(3)用含x的代数式表示y;

(4)用含y的代数式表示x;

(5)当x=负2,0时,所对应的y的值是多少?

(6)写出方程3x+2y=10的三个解.

(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的难点。)

大显身手:

课内练习第2题

梳理知识,课堂升华

本节课你有收获吗?能和大家说说你的感想吗?3.作业布置

必做题:书本作业题1、2、3、4。

选做题:书本作业题5、6。

设计说明

本节授课内容属于概念课教学。数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。只有真正理解数学概念,才能理解数学。二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的内涵。在二元一次方程的解的教学过程中,采用的是让学生体会“一个解、不止一个解、无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。

在讲授用含一个未知数的代数式表示另一个未知数的时候,采用“特殊、一般、特殊”的教学流程,以期突破难点。首先抛出问题“这几个解你是如何求的”,

此时注意的聚焦点是二元一次方程;其次学生归纳先定一个未知数的取值,代入原方程求另一个未知数的值,此时注意的聚焦点是一元一次方程;然后教师引导回到二元一次方程,假如x是一个常数,那么这个方程可以看成是一个关于谁的一元一次方程,此时注意的聚焦点是原来的二元一次方程;最后代入求值,此时注意的聚焦点是等号右边的那个算式,体会“用含一个未知数的代数式表示另一个未知数”在求值过程中的简洁性,强化这种代数形式。另外,在引导学生推导“用含一个未知数的代数式表示另一个未知数”的过程中,渗透数学的主元思想和转化思想。

初中数学二元一次方程教案第一课时 篇4

教学目标

1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

3.通过加法运算练习,培养学生的运算能力。

教学建议

(一)重点、难点分析

本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.

由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.

(二)知识结构

(三)教法建议

1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.

2.关于“去括号法则”,只要学生了解,并不要求追究所以然.

3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如

-3-4表示-3、-4两数的代数和,

-4+3表示-4、+3两数的代数和,

3+4表示3和+4的代数和

等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

4.先把正数与负数分别相加,可以使运算简便。

5.在交换加数的位置时,要连同前面的符号一起交换。如

12-5+7 应变成 12+7-5,而不能变成12-7+5。

教学设计示例一

有理数的加减混合运算(一)

一、素质教育目标

(一)知识教学点

1.了解:代数和的概念.

2.理解:有理数加减法可以互相转化.

3.应用:会进行加减混合运算.

(二)能力训练点

培养学生的口头表达能力及计算的准确能力.

(三)德育渗透点

通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.

(四)美育渗透点

学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.

二、学法引导

1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练

习,步步为营,分散难点,解决关键问题.

2.学生写法:练习→寻找简单的一般性的方法→练习巩固.

三、重点、难点、疑点及解决办法

1.重点:把加减混合运算算式理解为加法算式.

2.难点:把省略括号和的形式直接按有理数加法进行计算.

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、自制胶片.

六、师生互动活动设计

教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.

七、教学步骤

(一)创设情境,复习引入

师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目: -9+(+6);(-11)-7.

师:(1)读出这两个算式.

(2)“+、-”读作什么?是哪种符号?

“+、-”又读作什么?是什么符号?

学生活动:口答教师提出的问题.

师继续提问:(1)这两个题目运算结果是多少?

(2)(-11)-7这题你根据什么运算法则计算的?

学生活动:口答以上两题(教师订正).

师小结:减法往往通过转化成加法后来运算.

【教法说明】为了进行有理数的`加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.

师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算.(板书课题2.7有理数的加减混合运算(1))

教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成.

(二)探索新知,讲授新课

1.讲评(-9)+(-6)-(-11)-7.

(1)省略括号和的形式

师:看到这个题你想怎样做?

学生活动:自己在练习本上计算.

教师针对学生所做的方法区别优劣.

【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算??这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法.

师:我们对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即:

原式=(-9)+(+6)+(+11)+(-7)

=-9+6+11-7.

提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成??

学生活动:先自己练习尝试用两种读法读,口答(教师纠正).

【教法说明】教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力.

巩固练习:(出示投影1)

1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来.

(1)(+9)-(+10)+(-2)-(-8)+3;

(2)+()-()-().

2.判断

式子-7+1-5-9的正确读法是().

A.负7、正1、负5、负9;

B.减7、加1、减5、减9;

C.负7、加1、负5、减9;

D.负7、加1、减5、减9;

学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答.

【教法说明】这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法.

2.用加法运算律计算出结果

师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数放在一起分别相加.

-9+6+11-7

=-9-7+6+11.

学生活动:按教师要求口答并读出结果.

巩固练习:(出示投影2)

填空:

1.-4+7-4=-______________-_______________+_______________

2.+6+9-15+3=_____________+_____________+_____________-_____________

3.-9-3+2-4=____________9____________3____________4____________2

4.____________________________________

学生活动:讨论后回答.

【教法说明】学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点.

师:-9-7+6+11怎样计算?

学生活动:口答

[板书]

-9-7+6+11

=-16+17

=1

巩固练习:(出示投影3)

1.计算(1)-1+2-3-4+5;

(2).

2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3;

(2).

学生活动:四个同学板演,其他同学在练习本上做.

【教法说明】针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中.

师小结:有理数加减法混合运算的题目的步骤为:

1.减法转化成加法;

2.省略加号括号;

3.运用加法交换律使同号两数分别相加;

4.按有理数加法法则计算.

(三)反馈练习

(出示投影4)

计算:(1)12-(-18)+(-7)-15;

(2).

学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的.

【教法说明】这两个题目是本节课的重点.采用测验的方式来达到及时反馈.

(四)归纳小结

师:1.怎样做加减混合运算题目?

2.省略括号和的形式的两种读法?

学生活动:口答.

【教法说明】小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统.

八、随堂练习

1.把下列各式写成省略括号的和的形式

(1)(-5)+(+7)-(-3)-(+1);

(2)10+(-8)-(+18)-(-5)+(+6).

2.说出式子-3+5-6+1的两种读法.

3.计算

(1)0-10-(-8)+(-2);

(2)-4.5+1.8-6.5+3-4;

(3).

九、布置作业

(一)必做题:1.计算:(1)-8+12-16-23;

(2);

(3)-40-28-(-19)+(-24)-(-32);

(4)-2.7+(-3.2)-(1.8)-2.2;

(二)选做题:(1)当时,,,哪个最大,哪个最小?

(2)当时,,,哪个最大,哪个最小?

十、板书设计

初中数学二元一次方程教案第一课时 篇5

知识技能目标

1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

2、利用反比例函数的图象解决有关问题。

过程性目标

1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。

教学过程

一、创设情境

上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。

二、探究归纳

1、画出函数的图象。

分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。

1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。

3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。

上述图象,通常称为双曲线(hyperbola)。

提问这两条曲线会与x轴、y轴相交吗?为什么?

学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。

学生讨论、交流以下问题,并将讨论、交流的结果回答问题。

1、这个函数的图象在哪两个象限?和函数的图象有什么不同?

2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

反比例函数有下列性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k

1、双曲线的两个分支与x轴和y轴没有交点;

2、双曲线的两个分支关于原点成中心对称。

以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。

在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。

三、实践应用

例1若反比例函数的图象在第二、四象限,求m的值。

分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1

解由题意,得解得。

例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。

分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k0,所以直线与y轴的交点在x轴的上方。

解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k

例3已知反比例函数的图象过点(1,—2)。

(1)求这个函数的解析式,并画出图象;

(2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。

解(1)设:反比例函数的解析式为:(k≠0)。

而反比例函数的图象过点(1,—2),即当x=1时,y=—2。

所以,k=—2。

即反比例函数的解析式为:。

(2)点A(—5,m)在反比例函数图象上,所以,

点A的坐标为。

点A关于x轴的对称点不在这个图象上;

点A关于y轴的对称点不在这个图象上;

点A关于原点的对称点在这个图象上;

例4已知函数为反比例函数。

(1)求m的值;

(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

(3)当—3≤x≤时,求此函数的最大值和最小值。

解(1)由反比例函数的定义可知:解得,m=—2。

(2)因为—2

(3)因为在第个象限内,y随x的增大而增大,

所以当x=时,y最大值=;

当x=—3时,y最小值=。

所以当—3≤x≤时,此函数的最大值为8,最小值为。

例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。

(1)写出用高表示长的函数关系式;

(2)写出自变量x的取值范围;

(3)画出函数的图象。

解(1)因为100=5xy,所以。

(2)x>0。

(3)图象如下:

说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。

四、交流反思

本节课学习了画反比例函数的图象和探讨了反比例函数的性质。

1、反比例函数的图象是双曲线(hyperbola)。

2、反比例函数有如下性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k

五、检测反馈

1、在同一直角坐标系中画出下列函数的图象:

(1);(2)。

2、已知y是x的反比例函数,且当x=3时,y=8,求:

(1)y和x的函数关系式;

(2)当时,y的值;

(3)当x取何值时,?

3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。

4、已知反比例函数经过点A(2,—m)和B(n,2n),求:

(1)m和n的值;

(2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1

初中数学二元一次方程教案第一课时 篇6

一、复习目标:

1、能说出一元二次方程及其相关概念,;

2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。

3、能灵活应用一元二次方程的知识解决相关问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力。

二、复习重难点:

重点:一元二次方程的解法和应用.

难点:应用一元二次方程解决实际问题的方法.

三、知识回顾:

1、一元二次方程的定义:

2、一元二次方程的常用解法有:

配方法的一般过程是怎样的?

3、一元二次方程在生活中有哪些应用?请举例说明。

4、利用方程解决实际问题的关键是。

在解决实际问题的过程中,怎样判断求得的结果是否合理?请举例说明。

四、例题解析:

例1、填空

1、当m时,关于x的方程(m-1)+5+mx=0是一元二次方程.

2、方程(m2-1)x2+(m-1)x+1=0,当m时,是一元二次方程;当m时,是一元一次方程.

3、将一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是.

4、用配方法解方程x2+8x+9=0时,应将方程变形为( )

A.(x+4)2=7B.(x+4)2=-9

C.(x+4)2=25D.(x+4)2=-7

学习内容学习随记

例2、解下列一元二次方程

(1)4x2-16x+15=0(用配方法解)(2)9-x2=2x2-6x(用分解因式法解)

(3)(x+1)(2-x)=1(选择适当的方法解)

例3、1、新竹文具店以16元/支的价格购进一批钢笔,根据市场调查,如果以20元/支的价格销售,每月可以售出200支;而这种钢笔的售价每上涨1元就少卖10支.现在商店店主希望销售该种钢笔月利润为1350元,则该种钢笔该如何涨价?此时店主该进货多少?

2、如图,在Rt△ACB中,∠C=90°,AC=6m,BC=8m,点P、Q同时由A、B两点出发分别沿AC,BC方向向点C匀速运动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半?