作为一名优秀的教育工作者,编写教学设计是必不可少的,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。如何把教学设计做到重点突出呢?以下是小编帮大家整理的小学数学优秀教学设计模板,仅供参考,希望能够帮助到大家。
一、深入了解学生,找准教学起点
要想学生通过40分钟的学习有所提高,首先就要了解学生的认知发展水平和已有的知识经验基础,也就是确定教学起点。教学起点就是学生在学习新的知识之前已具有的相关知识和技能以及有关学习的认知水平与态度。它是影响学生学习新知识的重要因素。二十一世纪是信息高速发展的时代,学生了解信息的途径很多,远比原来要快、要多,有时可能远远超出了教师的想象,因此教师事先想好的教学起点不一定是真实的起点。教师要想从学生的实际出发来设计教学过程,首先就要了解教学的真正起点。
二、客观分析教材,优化教学内容
教材是实现教学计划的重要载体,也是教师进行课堂教学的主要依据。要真正地用好教材,教师可以从以下几方面来思考:(1)为实现教学目标,教材提供的内容是否都有用,哪些需要补充,哪些可以删除或改变;(2)教材提供的教学顺序是否需要重新组合;(3)本节课的教学重点、难点是什么。只有解决了以上几个问题,才能使教学内容更易于教师教学,学生更易于自主探索。
在教学三年级上册《秒的认识》一课中,教材提供的是春节联欢晚会倒计时的一个场景来导入新课,从而感悟1秒钟的时间很短来揭示课题的。但是这一场景时间过去较长了,对学生而言感受不大。于是我结合了刚刚前几天学校组织观看过的神舟六号发射前的倒计时来进行导入,不仅使学生感受了1秒很短,更让学生了解祖国航空事业的发展,感受数学就在我们身边。在设计教学时,又插入刘翔在雅典奥运会上的成绩,明白1秒甚至比1秒更短的时间往往起着决定性的作用。通过学生课前收集时间格式,课堂交流,对学生进行了珍惜时间的教育。这样安排,使学生接受教学内容更丰富,更富有时代特色。
三、制定明确目标,贯穿各个细节
教学目标是教学的出发点,也是教学的归宿,它是教学设计中必须考虑的要素。数学教学的目标一定要着眼于学生可持续发展能力的培养,要在认真分析学生的起点,全面了解课程标准对学段的目标,以及客观分析教材的基础上,制定具体、可行的教学目标。规定学生在一节课结束后掌握哪些知识与技能,使哪些情感与态度得到发展。在设计《秒的认识》时,要求学生:
(1)能认识时间单位‘秒”,知道1分种=60秒,体会1秒,了解1秒的价值;
(2)能在开放的活动中发挥自己的观察力和想象力,通过看一看、说一说、算一算等,逐步培养初步的数学思维能力;
(3)初步建立1分1秒的时间观念,体验数学与生活的联系,渗透爱惜时间的教育,教育学生珍惜分分秒秒。
四、活跃教学活动,增浓学习氛围
当教学目标确立后,教师就需要考虑如何来达到目标,有效的学习活动理所当然成了达到目标的最好途径。课程标准指出,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索、合作交流是学生学习数学的重要方式。小组合作学习更是作为教师组织学生学习的首选形式。
在《秒的认识》一课中,设计教学时,我在关键的地方组织了学生的小组合作学习。第一处,在了解学生对秒的`知识掌握的情况中要求学生把自己知道的知识和小组内的 学交流,选出认为最有价值的知识向全班同学交流。
第二处,在学生明白秒针走l小格是1秒,走1人格是5秒后,让小组内的学生轮流出题,从而引导学生会求经过时间,认识秒针走1圈是60秒等知识,同学生在问题情境中自已创设问题,合作解决问题,突破教学的一个重点:时间单位的换算。
五、研究教学过程,探索教学顺序
教师的教学按照什么样的步骤进行,这是教学设计时必须要完成的任务。合理地安排教学顺序,有助于学生系统地进行学习,从一个知识层向另一个知识层提升。在设计教学过程时,通过听秒针走动的声音和观察钟面,先了解学生对学习新知识的准备,再观看神舟六号的发射来感受秒、交流秒的知识,这样的安排,使学生知道自己对旧知识的掌握和对新知识的了解,可以帮助学生有序地接受新知识,进一步探索自己的未知空间。
六、精心设计练习,拓宽探究空间
练习是数学教学的一个重要环节,是巩同新知。形成技能技巧,培养良好的思维品质,发展学生智力的重要途径。数学练习必须精心设计与安排,因为学生在做经过精心安排的练习时,不仅在积极地掌握数学知识,而且能获得进行创造性思维的能力。要充分发挥数学练习的功能,设计练习时除了应由浅入深、难易适当、逐步提高、突出重点、关键、注意题型搭配外,还应强化习题的趣味性和开放性。因为灵活多样、新颖、有趣的练习,能使学生克服厌倦心理,保持强烈的学习兴趣,促进学生的有效思维。而开放性的练习能给不同层次的学生提供更多参与的机会、成功的机会,能促进学生创新意识及创新能力的发展。
七、估计教学过程,预计意外事件
教学准备
教学目标
1、掌握平面向量的数量积及其几何意义;
2、掌握平面向量数量积的重要性质及运算律;
3、了解用平面向量的数量积可以处理垂直的问题;
4、掌握向量垂直的条件。
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学过程
1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,
则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。
并规定0向量与任何向量的数量积为0。
×探究:1、向量数量积是一个向量还是一个数量?它的`符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的积有什么区别?
(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定。
(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分。符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替。
(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0。因为其中cosq有可能为0。
教学目标:
学会估算方法。
教学重难点:
利用估算方法解决实际问题。
教学准备:
黄豆,杯子,天平等
教学过程:
一、引入
师:你们看,这是什么?
生:黄豆。
师:你们想知道这些黄豆有多少粒吗?
想一想:用什么方法可以知道黄豆有多少粒。
二、小组讨论,确定方案。
师:你们可以用课桌上的工具。
(杯子,天平等)
三、小组合作,实施方案。
四、汇报交流
方案一:
先数一杯黄豆的`数目,再看这些黄豆有多少杯,再用乘法计算即可。
方案二:
先测一把黄豆的数目,再看这些黄豆有多少把,再用乘法计算即可。
方案三:
先测100粒黄豆的重量,算出一粒的重量,再称出总重量,再用除法计算即可。
五、小结
数学在我们的生活中有着广泛的应用,请大家都要做留心观察的人。
教学内容:
人教版小学数学五年级下册轴对称图形
教学目标:
1、联系生活中的具体事物,通过观察和动手操作初步体会生活中的轴对称现象,认识轴对称图形的基本特征。
2、探索掌握轴对称图形的基本特征。
3、在对知识的探究过程中,培养学生的合作能力,动手能力、空间思维能力和良好的学习情感。
教学重点:
理解轴对称图形的特征。
教学难点:
掌握并能准确辨别较为复杂的轴对称图形。
教具准备:
多媒体课件、图片等。
教学过程:
一、创设激趣
谈话:同学们,老师今天带来了一个美丽的朋友,大家看!(出示只有一个触角的蝴蝶的图片。)
提问:仔细观察这张图片,你有什么发现和感受,还应该怎么做才好看?
学生回答。
生1:它是对称图形。
生2:给它画上一只脚。
教师:今天我们要研究的问题和这只美丽的蝴蝶也有一定的'关系。板书课题:轴对称图形,同时引导学生看了课题你想研究哪些问题?(请学生提出自己赶兴趣的问题)
【选择学生熟悉和感兴趣的生活素材,吸引学生的注意,激发学生主动参与学习活动的热情,初步感知物体的对称性,学生学习兴趣较浓。】
二、探索轴对称图形的特征
1、课件出示天安门、蜻蜓、枫叶等图片。引导学生观察图片上的物体,说说它们有什么共同特征。
教师:同学们请拿出你们自己手中的这些平面图形,折一折、比一比,和同组的同学交流一下你们发现了什么?(先小组讨论,再汇报)
引导学生用手摸一摸对折后的两边,说说有什么样的感觉。得出结论:这些图形对折后“两部分完全重合”。(动画演示对折过程)
介绍:我们把这些对折后能完全重合的图形称为“轴对称图形”。(板书轴对称图形定义)。中间这条折痕就是轴对称图形的对称轴。(板书:对称轴)
谈话:我们生活中还有哪些常见物体的平面图形也是轴对称图形呢?(学生交流并回答)
2、试一试
谈话:今天,老师还给大家带来了几位朋友,想和大家一起玩游戏,好吗?出示有几种不同的平面图形。
引导学生参照轴对称图形的定义,动手折一折、比一比,看看这些常见的图形哪些是轴对称图形?
汇报时引导学生用“完全重合”等词语来描述和判断是否是轴对称图形。
【让学生充分利用自己的生活经验,在观察和操作中形成轴对称图形的初步概念。】
4、判断轴对称图形
谈话:下面我们一起到“轴对称图形博物馆”去看看。(课件出示)
小组派代表汇报合作过程中发现的问题和解决的方法以及判断的结果及理由。
三、制作轴对称图形
谈话:你能自己创造一个美丽的轴对称图形吗?
引导学生制作轴对称图形。(展示学生的作品)
【培养学生的动手操作能力和实践能力,同时体验到成功的喜悦,进一步掌握轴对称图形的基本特征。】
四、感受轴对称美
谈话:生活中有那么多轴对称图形和具有轴对称特征的物体,是因为轴对称图形本身就是一种美。
电脑播放图片,让学生感受轴对称的美。
谈话:轴对称图形在我们的身边也有许多,让我们一起去感受它的美吧!
【设计意图:利用多媒体课件图、文、声、像并茂的特点,向学生展示了生活中的对称现象。美妙的图形深深地吸引了学生,学生的思绪因插上想象的翅膀而飞扬,真切地感受感受生活的美妙与神奇,激发学生发现美、创造美的积极情感。】
五、小结
此时此刻,你最想说什么呢?
生1:轴对称图形真美啊!
生2:轴对称图形真多啊!
板书设计:
轴对称图形
两侧图形完全重合
对称轴
教学目标:
1.学生掌握乘法估算的方法,会进行乘法估算。
2.在解决现实问题的过程中,培养学生估算的意识和习惯;培养学生归纳概括、迁移类推以及应用所学知识灵活解决实际问题的能力。
3.在估算的过程中,探索解决问题的策略,并能运用数学语言进行表述和交流;感受数学与生活的紧密联系,激发学生热爱数学、学好数学的情感。
教学过程:
一、猜数引入
老师想了一个数,它是个两位数,你们猜它是几?(随着学生的猜测,教师用“大了”和“小了”提示)
回忆刚才我们猜数的时候,是不是一下子就猜出来了呢?像刚才这种在老师提示下进行有根据的猜测,叫估计。其实,在我们的生活和学习中有很多地方要用到估计。
[说明:课前的猜数游戏,学生兴趣盎然,为新课的引入做好了铺垫。]
二、感受估计的需要
1.今天的课堂上,除了老师和你们外,还来了你们的一些老朋友呢!(课件呈现8只机器猫)来了多少只机器猫?(当数量少的时候,我们一眼就可以看出来了)
快数一数,这里有多少?(课件呈现满屏幕的机器猫,造成学生数不清的困难)
2.这么多,一下子数不清,我们可以估一估呀!(学生第一次估的差距比较大,有1000、100、500、200等)
师:怎样估计能精确些?
生1:圈出一份估一估,然后再看有这样的几份。
生2:给这些机器猫排排队。
3.课件给机器猫排队,排成8行。(按先估每行大约有几只,然后乘8的方法估一估)
4.师:机器猫每行有29只,排成8行,大约有多少只?该怎么列式?
[说明:创设数机器猫只数的情境,分成以下几个层次进行教学:1.直接呈现数量较少的机器猫,学生一眼就可以观察得出;2.呈现很多机器猫,造成数不清的困难,引导学生感受估计的需要;3.由于眼花缭乱,第一次估计不精确;4.通过交流估计的方法,达到比较精确的`估算。这样四个层次的教学,让学生主动感受和体验到了估算的必要性与作用。]
三、交流估算的方法
1.29×8大约等于多少?把你的想法,在练习本上表示出来。
2.交流展示学生的估算方法。
A.29×8≈240,把29看成30。
(师介绍约等号的含义、写法和读法,并与等号进行比较)
B.29×8≈160,把29看成20。
C.29×8≈290,把8看成10。
D.29×8≈300,把29看成30,把8看成10。
……
[说明:给学生创设一个良好的心理环境,让他们的思考和情感得到完全的放松与充分的尊重,这样他们的想法和意见才得以尽情地流露与表述,不同的看法和结论才可以在一步步的表达中得到完善。学生在此出现了几种不同的方法,虽然有的方法还不恰当,但每个学生的思维和情感得到了发展,并在与他人方法的比较中感受到了不同估算方法的优越性和局限性。]
3.这几种方法有什么相同的地方吗?
4.同样是把因数看成整十数,但估出来的结果差距很大,这是什么原因啊?
5.通过交流明确:应该把因数看成和它最接近的整十数再估算。(去掉29×8≈160)
6.剩下的三个结果,哪个与准确值最接近?(课件演示每种估算方法)
(A是多估了1个8,C是多估了2个29,D是多估了2个29和1个8;这里不需要向学生直接说明,只要让学生感受即可)
小结:这几种方法都可以,同学们可以根据需要选择最合适的方法进行估算。
7.全班42人,如果送给每人5只机器猫,估一估,这些机器猫够送吗?42×5≈200(只)
和前面一题进行比较:29×8≈240(估大),42×5≈200(估小)。
8.试一试。
21×6≈ 48×5≈ 397×3≈ 510×7≈
9.小结:我们在估算的时候,都是把这些乘法算式中的某个数看成整十、整百、整千的数,那是不是可以看成任意的整十、整百、整千的数呢?(要看成接近的整十、整百、整千的数)
四、拓展提升
其实,在我们的生活中,有很多地方都和估算有很大的 联系。陆老师今年暑假的北京之游就碰到了很多和估算有关的知识,让我们以数学的眼光去看看吧!
第一站:长城
长城离陆老师所住的宾馆有点远,汽车每小时行驶53千米,3小时才到达,长城离宾馆大约有()千米。
第二站:美丽的北海公园
告示:每条大游船限乘120人。
正好有4个旅游团,每个团有31人,估算一下,他们能同时上一条船吗?
[说明:此题引发了学生的争论:约等于120,却为什么不能上船?出现认知上的矛盾,学生通过争论后,明白把31看成30是估小了,所以结果也比准确值小了。在这个过程中,学生懂得了估算和精确计算之间是有误差的,在运用估算结果来解决实际问题时,还必须考虑现实情况。]
比较:31×4○120(让学生明白估算的另一个用途)
第三站:天坛公园
每张门票8元,陆老师所在的旅游团共有39人,320元钱够买门票吗?
为什么同样是估算,刚才不能上船,而现在买门票却又够了呢?
学生通过辨析比较发现,刚才是估小了,而现在是估大了,所以够了。
比较:39×8○320
第四站:购买北京特产
每种特产,老师准备都买8份,请你们帮助我算一算,大约要花多少元钱?
反馈:1.(58+11+33)×82.58×8+11×8+33×8
≈(60+10+30)×8 ≈60×8+10×8+30×8
=800(元) =800(元)
比较两种方法,哪种简单?想一想,老师大约带多少钱就够了?(让学生明白估算还可以为我们的生活提供帮助)
说明:
《数学课程标准》指出,“估算在日常生活与数学学习中有着十分广泛的应用,培养学生的估算意识,发展学生的估算能力,让学生拥有良好的数感,具有重要的价值”。而学生估算习惯的培养与能力的提高,很大程度上取决于教师的估算意识。在平时的教学中,我充分挖掘估算题材,重视进行估算示范,使学生认识到估算的必要性和优越性,并关注估算在培养学生逻辑思辨、辩证看待问题能力上的作用。
1.大胆改变教材内容,使学生产生估算的需要,体验估算的现实性。
乘法的估算,学生以前并没有接触过。在这节课上,我根据学生的实际情况,把教材的内容做了一些调整,将学生已有的经验和所学习的新内容自然地融合到一起,并通过现实问题,让学生明白估算的必要性。与此同时,课中所设计的一系列练习,都是学生在实际生活中会碰到的现实问题,并具备用估算解决的现实需要,因而整节课都能让学生感受到浓厚的生活味。
2.深入挖掘教材内涵,让学生体验数学课堂的思辨性。
成功的数学课,既能将复杂的问题简单化,也能将简单的问题深化。“乘法估算”一课,教师们都会想到要让学生体验估算的“必要性”,设计的学习素材要富含现实气息,但仅仅停留在这个层面上是不够的。如果深入研究教材我们就可以发现,在现实运用估算的过程中,分为两种情形:一是根据估的结果就可以解决相关问题;二是因为估的结果有时估大有时估小,单凭估出来的数据并不能直接准确地回答所要解决的问题,即还需结合现实情况进行考量。我在教学中充分考虑了这些情况,精心设计情境,让学生在情境中体验到“估大”、“估小”的情况及如何运用这样的结果解决问题,同时穿插比大小的训练,从而将现实性、思辨性较好地统一起来。
教学目标:
1.掌握基本事件的概念;
2.正确理解古典概型的两大特点:有限性、等可能性;
3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.
教学重点:
掌握古典概型这一模型.
教学难点:
如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.
教学方法:
问题教学、合作学习、讲解法、多媒体辅助教学.
教学过程:
一、问题情境
1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?
二、学生活动
1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;
2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;
(2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,
这6种情况的可能性都相等;
三、建构数学
1.介绍基本事件的概念,等可能基本事件的'概念;
2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);
3.得出随机事件发生的概率公式:
四、数学运用
1.例题.
例1
有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)
探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)
探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?
学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.
探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.
(设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)
例2
一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中
一次摸出2只球,则摸到的两只球都是白球的概率是多少?
问题:在运用古典概型计算事件的概率时应当注意什么?
①判断概率模型是否为古典概型
②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.
教师示范并总结用古典概型计算随机事件的概率的步骤
例3
同时抛两颗骰子,观察向上的点数,问:
(1)共有多少个不同的可能结果?
(2)点数之和是6的可能结果有多少种?
(3)点数之和是6的概率是多少?
问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?
学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.
问题:点数之和是3的倍数的可能结果有多少种?
(介绍图表法)
例4
甲、乙两人作出拳游戏(锤子、剪刀、布),求:
(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.
设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.
2.练习.
(1)一枚硬币连掷3次,只有一次出现正面的概率为_________.
(2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..
(3)第103页练习1,2.
(4)从1,2,3,…,9这9个数字中任取2个数字,
①2个数字都是奇数的概率为_________;
②2个数字之和为偶数的概率为_________.
五、要点归纳与方法小结
本节课学习了以下内容:
1.基本事件,古典概型的概念和特点;
2.古典概型概率计算公式以及注意事项;
3.求基本事件总数常用的方法:列举法、图表法.