作为一名为他人授业解惑的教育工作者,有必要进行细致的教案准备工作,借助教案可以有效提升自己的教学能力。那么教案应该怎么写才合适呢?下面是小编收集整理的人教版小学五年级数学下册教案,欢迎阅读,希望大家能够喜欢。

人教版五年级数学下册教案 篇1

教学目标

1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。

2.通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。

3.培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。

重点难点

重点:初步学会准确判断一个数是质数还是合数。

难点:区分奇数、质数、偶数、合数。

教具学具

投影仪。

教学过程

一、创设情境,激趣导入

师:“六一”快到了,老师给大家送来了礼物!(出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?

师:密码是一个三位数,它既是一个偶数,又是5的倍数;位上的数是9的因数;十位上的数是最小的质数。你能打开密码锁吗?

学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。

二、探究体验,经历过程

1.认识质数与合数。

师:找因数--找出1到20的各个数的因数,看一看它们的因数的个数有什么特点?

学生分组进行,找出之后进行分类。

生:老师,我发现这些数的'因数有的只有1个,有的有2个,有的有3个,还有的有4个或更多。

师:很好,我们可以把它们分类,大家把分类结果填在表中。

投影展示学生的分类结果。

【设计意图:在学生独立思考的基础上,找出1~20的因数后总结出特点,为下文概念的出示做准备,使学生亲身经历概念的形成过程,印象深刻】

师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。

师:再举出几个质数和合数的例子,举得完吗?说明了什么?(质数和合数都有无数个)

想一想:最小的质数(合数)是几?的呢?

师:所以按照因数个数的多少,自然数又可以分为哪几类呢?

课件出示:可以把非0自然数分为质数和合数以及1,共三类。

2.制作质数表。

投影出示例1。

师:怎样找出100以内的质数呢?

生1:可以把每个数都验证一下,看哪些是质数。

生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。然后划掉3的倍数,但3不划掉……

【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步培养了学生的数感】

三、课末总结,梳理提升

这节课我们学习了质数和合数的概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。

人教版五年级数学下册教案 篇2

学习内容:

课本第97页例1及“做一做”,第99页练习十九第1、2、3题。

学习目标:

1.我会用分数与小数的关系,把小数化成分数。

2.我能应用所学数学知识解决问题的能力。

学习重难点:

小数化分数的方法。

学习过程:

一、导入新课

请大家回忆一下,说说小数的意义是什么?本节课,我们一起学习分数和小数的互化,怎样把小数化成分数?

二、合作探究、检查独学

1.自学例1,小组合作交流

用分数表示:

用小数表示:

这两个结果有什么关系:

2.用自己的话说一说怎样把小数化成分数?应注意什么问题?

①我的想法:

②完成课本97页“自己试一试”三个填空题。

3.小组代表展示、汇报

4.总结升华

5.我能行:“做一做”把下列小数化成分数。

0.4=0.05=0.37=

0.45=0.013=

人教版五年级数学下册教案 篇3

教材分析:

例3是公因数、最大公因数在生活中的实际应用。教材通过创设用整块的正方形地砖铺满长方形地面的问题情境,应用公因数、最大公因数的概念求方砖的边长机器最大值。

学情分析:

学生已掌握了公因数和最大公因数的概念及求法,本课内容主要是帮助学生通过分析,使学生发现这样的地砖必须即使16的因数又是12的因数。在此基础上学习本课不难。

教学目标:

1.通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

2.在探索新知的过程中,培养学好数学的信心以及小组成员之间互相合作的精神。

重点难点:

初步了解两个数的公因数和最大公因数在现实生活中的应用。初步了解两个数的公因数和最大公因数在现实生活中的应用。

方法指导:

自主学习合作探究

教学过程:

一、激趣导入

(约5分钟)

课件展示教材62页例3,今天我们要给这个房子铺砖大家感兴趣吗?要求要用整数块。

二、自主学习

(约5分钟)

1.几个数()叫做这几个数的公因数,其中最大的一个叫做()

2.16的因数有(),24的因数有(),16和24的公因数是(),最小公因数是(),最大公因数是()。

3.A=225,B=235,那么A和B的最大公因数是()。

4.用短除法求出99和36的最大公因数。

三、合作交流

(约13分钟)

小组合作学习教材第62页例3。

1.学具操作。

用按一定比例缩小的方格纸表示地面,用不同边长的正方形纸表示地砖,我们发现边长是厘米的正方形的纸可以正好铺满,没有剩余,其它的都不行。

2.仔细观察,你们发现能铺满的地砖边长有什么特点?把你的发现在小组里交流。

3.总结。

解决这类问题的关键,是把铺砖问题转化成求公因数的问题来求。

四、精讲点拨

(约8分钟)

根据自主学习、合作探究的情况明确展示任务,进行展示。教师引导讲解。

五、测评总结

(约9分钟)

达标练习

(1)要将长18厘米、宽12厘米的长方形纸剪成正方形的纸,没有剩余,边长可以是几厘米?最长是几厘米?

(2)玫瑰花72朵,玉兰花48朵,用这两种花搭配成同样的花束(正好用完,没有剩余),最多能扎成多少束?每束有几朵玫瑰花和玉兰花?

(3)有一个长方形纸,长60厘米,宽40厘米,如果要剪成若干个同样大小的小正方形而没有剩余,剪出的小正方形的边长最长是多少?

六、全课总结

这节课你都学到了什么知识?有什么收获?

七、作业布置

练习十五5,6题。

板书设计:

人教版五年级数学下册教案 篇4

学习内容:

人教版小学数学五年级下册第21页第8题、第22页。

学习目标:

1.通过综合练习,我能熟练掌握2、5、3的倍数的特征。

2.我能运用2、5、3的倍数的特征解决问题。

学习重点:

熟练掌握2、5、3的倍数的特征。

学习难点:

运用2、5、3的倍数的特征解决综合问题。

教学过程:

一、导入新课

二、检查独学

1.互动分享独学部分的完成情况。

2.质疑探讨。

三、合作探究

1.小组合作,完成课本第21页第8题。

(1)3个3的倍数的偶数________________

(2)3个5的倍数的奇数________________

讨论:你能说出3个既是3的倍数又是5的倍数的偶数或奇数吗?

2.自主完成第22页第10题,然后与同伴交流。

3.小组合作,完成第11题,然后组内代表汇报。

4.小组交流“生活中的数学”。

人教版五年级数学下册教案 篇5

1.课程目标

理解并能准确区分质数与合数的概念。

掌握判断一个数是质数还是合数的方法。

培养学生的逻辑思维和数学探究能力。

激发学生对数学的兴趣,特别是对数论领域的探索兴趣。

2.教学内容

定义引入:明确质数(只有1和其本身两个正因数的自然数)与合数(除了1和其本身外,至少还有一个正因数的自然数)的概念。

案例分析:通过具体数字示例,区分质数与合数。

判断技巧:介绍试除法,作为判断一个数是否为质数的基本方法。

特殊性质:探讨质数的一些基本性质,如每个合数都可以表示为几个质数的乘积(算术基本定理简介)。

3.教学方法

讲授与示范:讲解质数和合数的基本概念,辅以板书和PPT展示。

小组合作:分组让学生找出1-100中的所有质数,增强实践操作能力。

探究学习:提出问题“是否存在无限多的质数?”引导学生进行讨论和初步研究。

4.课堂活动

快速判断比赛:设计小游戏,看谁最快判断出一系列随机数是质数还是合数。

质数寻宝:制作一张藏宝图,线索是质数序列,学生需解开质数谜题才能找到下一个线索。

5.课后作业

完成一份关于质数的`小研究报告,包括发现规律、趣事或对特定质数的研究。

实践作业:设计一个程序或算法,自动判断一个数列中的质数。

6.评估方式

课堂表现:观察学生在小组活动中的参与度和合作精神。

作业反馈:通过课后作业的质量评估学生对质数概念的掌握程度。

小测试:设计一套涵盖质数和合数概念、判断方法的小测试,检验学习效果。

人教版五年级数学下册教案 篇6

教学内容:

苏教版义务教育教科书数学》五年级下册第37页例6、试一试和练一练,第39页练习六第1~3题。

教学目标:

1.使学生认识质数和合数的意义,能判断或写出质数或者合数,并说明理由;体会非0自然数的分类,了解50以内的质数。

2.使学生通过比较、分类、概括等活动认识质数和合数,积累认识数学概念的基本活动经验,进一步体会分类的思想,培养观察、比较,以及抽象、概括和判断、推理等思维能力。

3.使学生主动参与数学思考和交流等活动,体会数学内容的内在联系,产生对数学的积极情感和主动学习数学的愿望。

重点难点:

理解和认识质数和合数。

教学准备:

小黑板

教学过程:

一、导入新课

回顾:同学们在前面研究因数和倍数中,以是不是2的倍数为标准对大于O的自然数进行过分类,还记得按这个标准,把大于0自然数分成了哪几类吗?(板书:偶数奇数)

引入:这节课我们继续研究大于O的自然数的分类。今天要按怎样的标准分类,可以分成哪几类,分成的每一类是什么数呢?老师期望大家一起来研究分类的标准,通过自己的分类认识质数和合数。(板书课题)

二、认识新知

1.出示例6。了解题意,明确要求。

让学生分别写出6个数的所有因数。

交流:这6个数各有哪些因数?我们请一位同学来交流一下。指名交流,并板书出6个数的全部因数。

引导:现在大家观察这些数的'因数,看看它们因数的个数有什么不同,你想按什么分类?可以分成几类?在小组里先讨论,等会我们一起交流。

交流:你想按什么把这些数分类,分成几类?(学生交流不同想法,教师引导统一为两类)

引导:大家想到了可以按因数的个数分类,只有两个因数的为一类,有两个以上因数的为另一类。那这里只有两个因数的是哪几个数?有两个以上因数的呢?请你在课本上填一填。

交流:你是怎样填的?观察这3个数,只有两个因数的数,它们的因数是怎样的两个数?(板书:只有1和它本身两个因数)

有两个以上因数的数,它们的因数有什么特点?(板书:除了1和它本身还有别的因数)揭示:像2、3、5这几个数,只有1和它本身两个因数,这样的数叫作质数;(板书:质数)像6,8、9这几个数,除了1和它本身还有别的因数,也就是有两个以上因数,这样的数叫作合数。

追问:上面这几个数里,哪几个是质数?为什么?哪几个是合数?你是怎样想的?

2.完善分类。

提问:1是质数还是合数?说说你的想法。

说明:1只有一个因数,所以它既不是质数,也不是合数。(板书:1:既不是质数,也不是合数)

3.完成试一试。

让学生先填写因数,再判断各是什么数。

交流:说说你的判断依据和判断结果。(指名交流,呈现结果)

4.回顾整理。

三、练习内化

1.做练一练。

2.做练习六第1题。

3.做练习六第2题。

4.填充。(口答)

(1)质数只有()个因数,合数至少有()个因数。

(2)自然数中,最小的质数是(),最小的合数是()。

(3)比10小的数里,质数有()个,合数有()个。

(4)20的因数有(),其中是质数的有()

5.做练习六第3题。

四、全课小结

提问:这节课你认识了哪些知识,学到了什么本领?回顾一下,我们是怎样认识质数和合数的,学习过程中有哪些体会?