高中三角函数教材分析 篇1

一、教材

《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

二、学情

学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

三、教学目标

(一)知识与技能目标

能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

(二)过程与方法目标

经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

(三)情感态度价值观目标

激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

四、教学重难点

(一)重点

用解析法研究直线与圆的位置关系。

(二)难点

体会用解析法解决问题的数学思想。

五、教学方法

根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

六、教学过程

(一)导入新课

教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?

教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。

设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。

(二)新课教学——探究新知

教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。

判断方法:

(1)定义法:看直线与圆公共点个数

即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。

(2)比较法:圆心到直线的距离d与圆的半径r做比较,

(三)合作探究——深化新知

教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。

已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?

让学生自主探索,讨论交流,并阐述自己的解题思路。

当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。

(四)归纳总结——巩固新知

为了将结论由特殊推广到一般引导学生思考:

可由方程组的解的不同情况来判断:

当方程组有两组实数解时,直线l与圆C相交;

当方程组有一组实数解时,直线l与圆C相切;

当方程组没有实数解时,直线l与圆C相离。

活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。

(五)小结作业

在小结环节,我会以口头提问的方式:

(1)这节课学习的主要内容是什么?

(2)在数学问题的解决过程中运用了哪些数学思想?

设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。

作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。

七、板书设计

我的板书本着简介、直观、清晰的原则,这就是我的板书设计。

高中三角函数教材分析 篇2

一、指导思想与理论依据

数学是一门培养人的思维在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。

二、教材分析

三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求,为此本节内容在三角函数中占有非常重要的地位。

三、学情分析

本节课的授课对象是本校高一(3)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

四、教学目标

(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

(2)、能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

(3)、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

(4)、个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

五、教学重点和难点

1、教学重点

理解并掌握诱导公式。

2、教学难点

正确运用诱导公式,求三角函数值,化简三角函数式。

六、教法学法以及预期效果分析

“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。

1、教法

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。

2、学法

在本节课的教学过程中,本人引导学生的学法为思考问题——共同探讨——解决问题——简单应用——重现探索过程——练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。

3、预期效果

本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。

七、教学流程设计

(一)创设情景

1、复习锐角300,450,600的三角函数值;

2、复习任意角的三角函数定义;

设计意图

自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。

(二)新知探究

1、让学生发现300角的终边与2100角的终边之间有什么关系;

2、让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;

3、Sin2100与sin300之间有什么关系。

设计意图

由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与特殊角的三角函数值的关系做好铺垫。

(三)问题一般化

探究

1、探究发现任意角a的终边与—a的终边关于原点对称;

2、探究发现任意角a的终边与角a+1800或a—1800的终边与单位圆的交点坐标关于原点对称;

3、探究发现任意角a与角a+1800或a—1800的三角函数值的关系。

设计意图

首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二。同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进。

(四)练习

利用诱导公式(二),口答三角函数值。

(五)问题变形

由sin3000=—sin600出发,用三角的定义引导学生求出sin(—3000),sin1500值,让学生联想若已知sin3000=—sin600,能否求出sin(—3000,sin1500)的值。

学生自主探究

1、探究任意角a与角1800—a的三角函数又有什么关系;

2、探究任意角a与角900+a的三角函数之间又有什么关系。

设计意图

遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题—观察发现—到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战。而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战。彼此相信,彼此信任,产生了师生的默契,师生共同进步。

展示学生自主探究的结果

诱导公式(三)、(四)

给出本节课的课题,三角函数的诱导公式

设计意图

标题的后给出,让学生在经历整个探索过程后,还回味在探索,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结。

(六)概括升华

三角函数的诱导公式口诀:即“奇变偶不变,符号看象限”。

设计意图

简便记忆公式。

(七)练习强化

求下列三角函数的值:(1)sin(—1000);(2)cos(—20400)。

设计意图

本练习的设置重点体现一题多解,让学生不仅学会灵活运用应用三角函数的诱导公式,还能养成灵活处理问题的良好习惯。这里还要给学生指出课本中的“负角”化为“正角”是针对具体负角而言的。

学生练习

化简:(例题)

设计意图

重点加强对三角函数的诱导公式的综合应用。

(八)小结

1、小结使用诱导公式化简任意角的三角函数为锐角的步骤。

2、体会数形结合、对称、化归的思想。

3、“学会”学习的习惯。

(九)作业

1、课本P—27,第1,2,3小题;

2、附加课外题略。

设计意图

加强学生对三角函数的诱导公式的记忆及灵活应用,附加题的设置有利于有能力的同学“更上一楼”.

(十)板书设计:(略)

高中三角函数教材分析 篇3

一.教学目标

1.知识与技能

(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。

(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。

2.过程与方法

(1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。

(2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。

3.情感、态度、价值观

(1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。

(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。

二.教学重点与难点

教学重点:探求π-a的诱导公式。π+a与-a的诱导公式在小结π-a的诱导公式发现过程的基础上,教师引导学生推出。

教学难点:π+a,-a与角a终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。

三.教学方法与教学手段

问题教学法、合作学习法,结合多媒体课件

四.教学过程

角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值怎么求呢?先看一个具体的问题。

(一)问题提出

如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题。

【问题1】求390°角的正弦、余弦值. 一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系。即有:sin(a+k·360°) = sinα,

cos(a+k·360°) = cosα, (k∈Z) tan(a+k·360°) = tanα。

这组公式用弧度制可以表示成sin(a+2kπ) = sinα, cos(a+2kπ) = cosα, (k∈Z) (公式一) tan(a+2kπ) = tanα。

(二)尝试推导

如何利用对称推导出角π-a与角a的三角函数之间的关系。

由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等。反过来呢?如果两个角的三角函数值相等,它们的终边一定相同吗?比如说:

【问题2】你能找出和30°角正弦值相等,但终边不同的角吗?

角π-a与角a的终边关于y轴对称,有 sin(π-a) = sina,

cos(π-a) =-cosa,(公式二) tan(π-a) =-tana。

〖思考〗请大家回顾一下,刚才我们是如何获得这组公式(公式二)的? 因为与角a终边关于y轴对称是角π-a,,利用这种对称关系,得到它们的终边与单位圆的交点的纵坐标相等,横坐标互为相反数。于是,我们就得到了角π-a与角a的三角函数值之间的'关系:正弦值相等,余弦值互为相反数,进而,就得到我们研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系。

(三)自主探究

如何利用对称推导出π+a,-a与a的三角函数值之间的关系。

刚才我们利用单位圆,得到了终边关于y轴对称的角π-a与角a的三角函数值之间的关系,下面我们还可以研究什么呢?

【问题3】两个角的终边关于x轴对称,你有什么结论?两个角的终边关于原点对称呢?

角-a与角a的终边关于x轴对称,有: sin(-a) =-sina, cos(-a) = cosa,(公式三) tan(-a) =-tana。

角π+a与角a终边关于原点O对称,有: sin(π +a) =-sina,

cos(π +a) =-cosa,(公式四) tan(π +a) = tana。

上面的公式一~四都称为三角函数的诱导公式。

(四)简单应用

例求下列各三角函数值:

(1) sinp;

(2) cos(-60°);

(3)tan(-855°)

(五)回顾反思

【问题4】回顾一下,我们是怎样获得诱导公式的?研究的过程中,你有哪些体会?

知识上,学会了四组诱导公式;思想方法层面:诱导公式体现了由未知转化为已知的化归思想;诱导公式所揭示的是终边具有某种对称关系的两个角三角函数之间的关系。主要体现了化归和数形结合的数学思想。具体可以表示如下:

(六)分层作业

1、阅读课本,体会三角函数诱导公式推导过程中的思想方法;

2、必做题 课本23页13 3、选做题

(1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗?

(2)角α和角β的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗?

高中三角函数教材分析 篇4

(一)概念及其解析

这一栏目的要点是:阐述概念的内涵;在揭示内涵的基础上说明本课内容的核心所在;必要时要对概念在中学数学中的地位进行分析;明确概念所反映的数学思想方法。在此基础上确定教学重点。

概念

描述周期现象的数学模型,最基本而重要的背景:匀速圆周运动。

定义域:(弧度制下)任意角的集合;对应法则:任意角α的终边与单位圆的交点坐标为(x,y),正弦函数为y=sinα,余弦函数为x=cosα;值域:[-1,1]。

概念解析

核心:对应法则。

思想方法:函数思想--一般函数概念的指导作用;形与数结合--象限角概念基础上;模型思想--单位圆上的点随角的变化而变化的规律的数学刻画。

重点:理解任意角三角函数的对应法则--需要一定时间。

(二)目标和目标解析

一堂课的教学目标是教学目的的具体化,是教学活动每一阶段所要实现的教学结果,是衡量教学质量的标准。当前,许多教师没有意识到制定教学目标的重要性,他们往往只从“课标”或“教参”上抄录,而且表述目标时,“八股”现象严重。我们主张,课堂教学目标不以“三维目标”(知识与技能、过程与方法、情感态度价值观)或“四维目标”(知识技能、数学思考、解决问题、情感态度)分列,而以内容及由内容反映的思想方法为载体,将数学能力、情感态度等隐性目标融于其中,并用了解、理解、掌握等及相应的行为动词经历、体验、探究等表述目标,特别要阐明经过教学,学生将有哪些变化,会做哪些以前不会做的事。

为了更加清晰地把握教学目标,以给课堂中教和学的行为做出准确定向,需要对教学目标中的关键词进行解析,即要解析了解、理解、掌握、经历、体验、探究等的具体含义,其中特别要明确当前内容所反映的数学思想方法的教学目标。

教学目标:

理解任意角三角函数(正弦、余弦、正切)的定义。

目标解析:

(1)知道三角函数研究的问题;

(2)经历“单位圆法”定义三角函数的过程;

(3)知道三角函数的对应法则、自变量(定义域)、函数值(值域);

(4)体会定义三角函数过程中的数形结合、数学模型、化归等思想方法.

(三)教学问题诊断分析

这一栏目的要点是:教师根据自己以往的教学经验,对学生认知状况的分析,以及数学知识内在的逻辑关系,在思维发展理论的指导下,对本内容在教与学中可能遇到的困难进行预测,并对出现困难的原因进行分析。在上述分析的基础上指出教学难点。

教学问题诊断和教学难点:

认知基础

(1)函数的知识--“理解三角函数定义”到底要理解什么?--三要素;

(2)锐角三角函数的定义--背景(直角三角形)、对应关系(角度 比值)、解决的问题(解三角形)--侧重几何特性;

(3)任意角、弧度制、单位圆--在直角坐标系下讨论问题的经验,借助单位圆使问题简化的经验。

认知分析

(1)三角函数是一类特殊函数,“三角函数”是“函数”的下位概念,用“概念同化”方式学习,要理解“三要素”的具体内涵,其中核心是“对应法则”;

(2)从锐角三角函数到任意角三角函数,一种“形式推广”,载体要从直角三角形过渡到直角坐标系,其核心是要明确用坐标定义三角函数的思想方法;

(3)体会将“任意点”化归到“单位圆上的点”的意义--求简的思想。

教学难点

(1)先要在弧度制下(用单位圆的半径度量角)实现角的集合与实数集的一一对应,再实现数到坐标的对应,不是直接的对应,会造成理解困难;

(2)锐角三角函数的“比值”过渡到坐标表示的比值,需要从函数角度重新认识问题;

(3)求简到“单位圆上点的坐标”,思想方法深刻,学生不易理解。

(四)教学过程设计

在设计教学过程时,如下问题需要予以关注:

强调教学过程的内在逻辑线索;

要给出学生思考和操作的具体描述;

要突出核心概念的思维建构和技能操作过程,突出思想方法的领悟过程分析;

以“问题串”方式呈现为主,应当认真思考每一问题的设计意图、师生活动预设,以及需要概括的概念要点、思想方法,需要进行的技能训练,需要培养的能力,等。

另外,要根据内容特点设计教学过程,如基于问题解决的设计,讲授式教学设计,自主探究式教学设计,合作交流式教学设计,等。

教学过程设计

1.复习提问

请回答下列问题:

(1)前面学习了任意角,你能说说任意角概念与平面几何中的角的概念有什么不同吗?

(2)引进象限角概念有什么好处?

(3)在度量角的大小时,弧度制与角度制有什么区别?

(4)我们是怎样简化弧度制的度量单位的`?

(设计意图:从为学习三角函数概念服务的角度复习;关注的是思想方法。)

2.先行组织者

我们知道,函数是描述客观世界变化规律的重要数学模型。例如指数函数描述了“指数爆炸”,对数函数描述了“对数增长”等。圆周运动是一种重要的运动,其中最基本的是一个质点绕点O 做匀速圆周运动,其变化规律该用什么函数模型描述呢?“任意角的三角函数”就是一个刻画这种“周而复始”的变化规律的函数模型。

(设计意图:解决“学习的必要性”问题,明确要研究的问题。)

3.概念教学过程

问题1 对于三角函数我们并不陌生,初中学过锐角三角函数,你能说说它的自变量和对应关系各是什么吗?任意画一个锐角 α,你能借助三角板,根据锐角三角函数的定义找出sinα的值吗?

(设计意图:从函数角度重新认识锐角三角函数定义,突出“与点的位置无关”。)

问题2 你能借助象限角的概念,用直角坐标系中点的坐标表示锐角三角函数吗?

(设计意图:比值“坐标化”。)

问题3 上述表达式比较复杂,你能设法将它化简吗?

(设计意图:为“单位圆法”作铺垫。学生答出“取点P(x,y)使x2+y2=1”后追问“为什么可以这样做?)”

教师讲授:类比上述做法,设任意角α的终边与单位圆交点为P(x,y),定义正弦函数为y=sinα,余弦函数为x=cosα。

(设计意图:“定义”是一种“规定”;把精力放在定义合理性的理解上。)

问题4 你能说明上述定义符合函数定义的要求吗?

(设计意图:让学生用函数的三要素说明定义的合理性,以此进一步明确三角函数的对应法则、定义域和值域。)

例1 分别求自变量π/2,π,- π/3所对应的正弦函数值和余弦函数值。

(设计意图:让学生熟悉定义,从中概括出用定义解题的步骤。)

例2 角α的终边过P(1/2, - /2),求它的三角函数值。

4.概念的“精致”

通过概念的“精致”,引导学生认识概念的细节,并将新概念纳入到概念系统中去,使学生全面理解三角函数概念。这里包括如下内容:

三角函数值的符号问题;

终边与坐标轴重合时的三角函数值;

终边相同的角的同名三角函数值;

与锐角三角函数的比较:因袭与扩张;

从“形”的角度看三角函数--三角函数线,联系的观点;

终边上任意一点的坐标表示的三角函数;

还可以引导学生思考三角函数的“多元联系表示”,例如,把实数轴想象为一条柔软的细线,原点固定在单位点A(1,0),数轴的正半轴逆时针缠绕在单位圆上,负半轴顺时针缠绕在单位圆上,那么数轴上的任意一个实数(点)t 被缠绕到单位圆上的点 P(cost,sint).

5.课堂小结

(1)问题的提出--自然、水到渠成,思想高度--函数模型;

(2)研究的思想方法--与锐角三角函数的因袭与扩张的关系,化归为最简单也是最本质的模型,数形结合;

(3)归纳概括概念的内涵,明确自变量、对应法则、因变量;

(4)用概念作判断的步骤、注意事项等。

(五)目标检测设计

一般采用习题、练习的方式进行检测。要明确每一个(组)习题或练习的设计目的,加强检测的针对性、有效性。练习应当由简单到复杂、由单一到综合,循序渐进地进行。当前,要特别注意摒除“一步到位”的做法。过早给综合题、难题有害无益,基础不够的题目更是贻害无穷。题目出不好、练习安排不合理是老师专业素养低的表现之一。

本课习题只要完成教科书上的相关题目即可,这里从略。

高中三角函数教材分析 篇5

一、概述

教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式

二、教学目标分析

1. 知识目标

1)

2) 掌握等比数列的定义 理解等比数列的通项公式及其推导

2.能力目标

1)学会通过实例归纳概念

2)通过学习等比数列的.通项公式及其推导学会归纳假设

3)提高数学建模的能力

3、情感目标:

1)充分感受数列是反映现实生活的模型

2)体会数学是来源于现实生活并应用于现实生活

3)数学是丰富多彩的而不是枯燥无味的

三、教学对象及学习需要分析

1、 教学对象分析:

1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。

2)对归纳假设较弱,应加强这方面教学

2、学习需要分析:

四. 教学策略选择与设计

1.课前复习

1)复习等差数列的概念及通向公式

2)复习指数函数及其图像和性质

2.情景导入

高中三角函数教材分析 篇6

一、教学目标

1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

4、初步培养学生反证法的数学思维。

二、教学分析

重点:四种命题;难点:四种命题的关系

1。本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

2。教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,

3.“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

三、教学手段和方法(演示教学法和循序渐进导入法)

1。以故事形式入题

2多媒体演示

四、教学过程

(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

设计意图:创设情景,激发学生学习兴趣

(二)复习提问:

1.命题“同位角相等,两直线平行”的条件与结论各是什么?

2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

3.原命题真,逆命题一定真吗?

“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

学生活动:

口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.

设计意图: 通过复习旧知识,打下学习否命题、逆否命题的基础.

(三)新课讲解:

1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的'逆否命题。

(四)组织讨论:

让学生归纳什么是否命题,什么是逆否命题。

例1及例2

(五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

学生活动:

讨论后回答

这两个逆否命题都真.

原命题真,逆否命题也真

引导学生讨论原命题的真假与其他三种命题的真

假有什么关系?举例加以说明,同学们踊跃发言。

(六)课堂小结:

1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:

原命题若p则q;

逆命题若q则p;(交换原命题的条件和结论)

否命题,若¬p则¬q;(同时否定原命题的条件和结论)

逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定)

2、四种命题的关系

(1).原命题为真,它的逆命题不一定为真.

(2).原命题为真,它的否命题不一定为真.

(3).原命题为真,它的逆否命题一定为真

(七)回扣引入

分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:

第一句:“该来的没来”

其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。

第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。

第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。

同学们,生活中处处是数学,期待我们善于发现的眼睛

五、作业

1.设原命题是“若

断它们的真假. ,则 ”,写出它的逆命题、否命题与逆否命题,并分别判

2.设原命题是“当 时,若 ,则 ”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假.

高中三角函数教材分析 篇7

一、指导思想与理论依据

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析

三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。

三、学情分析

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

四、教学目标

(1)基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

(2)能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

(3)创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

(4)个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

五、教学重点和难点

1、教学重点

理解并掌握诱导公式。

2、教学难点

正确运用诱导公式,求三角函数值,化简三角函数式。

六、教法学法以及预期效果分析

“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。

1、教法

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。

2、学法

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题。

在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。

3、预期效果

本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。

七、教学流程设计

(一)创设情景

1、复习锐角300,450,600的三角函数值;

2、复习任意角的三角函数定义;

3、问题:由你能否知道sin2100的值吗?引如新课。

设计意图

高中数学优秀教案高中数学教学设计与教学反思

自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。

(二)新知探究

1、让学生发现300角的终边与2100角的终边之间有什么关系;

2、让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;

3、Sin2100与sin300之间有什么关系。

设计意图

由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫。

(三)问题一般化

探究一

1、探究发现任意角的终边与的终边关于原点对称;

2、探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;

3、探究发现任意角与的三角函数值的关系。

设计意图

首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二。同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进

(四)练习

利用诱导公式(二),口答下列三角函数值。

喜悦之后让我们重新启航,接受新的挑战,引入新的问题。

(五)问题变形

由sin3000=—sin600出发,用三角的定义引导学生求出sin(—3000),Sin1500值,让学生联想若已知sin3000=—sin600,能否求出sin(—3000),Sin1500)的值。学生自主探究

高中三角函数教材分析 篇8

教学目标:

(1)知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。

(2)过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。

(3)情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。

教学重难点:

(1)重点:了解集合的含义与表示、集合中元素的特性。

(2)难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。

教学过程:

【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?

[设计意图]引出“集合”一词。

【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。

[设计意图]探讨并形成集合的含义。

【问题3】请同学们举出认为是集合的例子。

[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。

【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?

[设计意图]区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。理解集合与元素的关系。

【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有实数根”组成的集

[设计意图]引出并介绍列举法。

【问题6】例1的讲解。同学们能用列举法表示不等式x-7

【问题7】例2的讲解。请同学们思考课本第6页的思考题。

[设计意图]帮助学生在表示具体的集合时,如何从列举法与描述法中做出选择。

【问题8】请同学们总结这节课我们主要学习了那些内容?有什么学习体会?

[设计意图]学习小结。对本节课所学知识进行回顾。布置作业。

高中三角函数教材分析 篇9

一、教学分析

三角函数是数学中常见的一类关于角度的函数。也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。三角函数是基本初等函数之一,它是中学数学的重要内容之一,它的认知基础主要是几何中圆的性质、相似形的有关知识,在必修Ⅰ中建立的函数概念以及指数函数、对数函数的研究方法。主要的学习内容是三角函数是概念、图像和性质,以及三角函数模型的简单应用;研究方法主要是代数变形和图像分析。因此,三角函数的研究已经初步把几何与代数联系起来了。本章所介绍的知识,既是解决生产实际问题的工具,又是学习后继内容和高等数学的基础,三角函数是数学中重要的数学模型之一,是研究度量几何的基础,又是研究自然界周期变化规律最强有力的数学工具。三角函数作为描述周期现象的重要数学模型,与其他学科联系紧密。

二、目标要求

1.总体要求

三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域有着重要作用。在本模块中,学生将通过实例,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律的问题中的作用。

2.具体要求

(1)任意角、弧度制:了解任意角的概念和弧度制,能进行弧度与角度的互化。

(2)三角函数

①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。

②借助单位圆中的三角函数线推导出诱导公式(正弦、余弦、正切),能画出y=sinx,y=cosx,y=tanx的图像,了解三角函数的周期性。

③借助图像理解正弦函数、余弦函数在[0,2],正切函数在上的性质(如单调性、最大和最小值、图像与x轴的交点等)。

④理解同角三角函数的基本关系式:

⑤结合具体实例,了解的实际意义;能借助计算器或计算机画出的图像,观察参数对函数图像变化的影响。

⑥会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型。

三、重点和难点分析

1.理解三角函数是刻画周期现象的重要模型

“三角函数”拓展了函数模型,三角函数模型是刻画周期现象变化规律的最重要、最基本的数学模型,可以直接表述实际问题,更重要的是用它来解决实际问题。

2.弧度制概念的建立

一方面,学生已经熟悉并掌握了角度制,因此,在学习弧度制时,会对学习弧度制的必要性产生怀疑,因而缺乏积极性;另一方面,由于弧度制的定义方法比较特殊,表面上看不出这种定义的优越性,因而对这种更加抽象、更加不易理解的新的度量制容易产生畏难心理。在教学中应注意解决学生学习心理上的障碍。

3.正弦型函数的图像变换

由于变换过程较长,变化较多,所以学生不易掌握。在教学时可以采取先分解,再综合,化整为零,逐个突破,然后再统一归纳的方法。最终,使学生能对变换的根据有全面而深刻的了解。

4.借助单位圆和函数图像学习三角函数

三角函数的基础是几何中的相似形和圆,而研究方法又主要是代数的,因此三角函数的学习集中地体现了数形结合的思想,在代数和几何之间建立了初步的联系。任意角、任意角的三角函数、三角函数的周期性、诱导公式、同角三角函数关系以及三角函数的图像等都可以通过单位圆进行直观的理解。

5.综合运用公式进行求值、化简、证明。

培养学生根据题目的不同特点,选择适当的公式,设计简捷合理的解题方法;初中代数中学习过的算术根、绝对值等基本概念和三角式结合起来,使学生适应这种新的变化,顺利地把二者结合起来,并熟练地掌握和应用。

四、课时安排

本章教学时间约需17课时,具体分配如下,

1、周期现象约1课时

2、角的概念的推广约1课时

3、弧度制约1课时

4、正弦函数和余弦函数的定义与诱导公式约4课时

5、正弦函数的性质与图像约2课时

6、余弦函数的图像与性质约1课时

7、正切函数约1课时

8、函数的图像约3课时

9、三角函数的简单应用约1课时

本章小结约2课时

五、教学建议与学法指导

1.教学建议

(1)充分挖掘教材潜力和身边的数学

充分运用教材中所提供的钱塘江潮的潮汐现象、地球围着太阳转、钟摆、水车、摩天轮等自然界、日常生活、生产实践中的实例,使学生感受到自然界中存在着大量遵循周期性运动变化的现象,同时也让学生逐渐认识到三角函数是刻画周期现象的重要模型。

(2)教学中要重视数学思想方法的渗透

无论是概念教学、性质教学还是习题讲解,本单元教学应始终渗透着旋转、对称变换及数形结合的思想方法,使学生初步形成用运动变化的观点以及借助图形的直观性来分析、解决问题。

(3)恰当地使用信息技术

信息技术应为数学的教学服务,教学中不应为用信息技术而用,关键要看其能否为教学目标服务,达到传统方法难以达到的效果。在本单元,有相当多的章节适合使用信息技术,如周期性、函数的图像及其变换等等,要尽力用多媒体进行直观展示,提高教学效果。

2.学法指导

(1)经历数学建模的过程;

(2)利用单位圆和正弦函数图像两种方式学习三角函数的有关知识;

(3)借助多媒体信息技术,深化对知识的理解。