教学目的:
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
教学重点:
集合的基本概念及表示方法
教学难点:
运用集合的两种常用表示方法——列举法与描述法,正确表示
一些简单的集合
授课类型:
新授课
课时安排:
1课时
教具:
多媒体、实物投影仪
内容分析:
1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念
集合是集合论中的'原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明
教学过程:
一、复习引入:
1.简介数集的发展,复习公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合记作N,
(2)正整数集:非负整数集内排除0的集记作Nx或N+
(3)整数集:全体整数的集合记作Z,
(4)有理数集:全体有理数的集合记作Q,
(5)实数集:全体实数的集合记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集记作Nx或N+Q、Z、R等其它
数集内排除0的集,也是这样表示,例如,整数集内排除0
的集,表示成Zx
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈A颠倒过来写
三、练习题:
1、教材P5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数(不确定)
(2)好心的人(不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|,所组成的集合,最多含(A)
(A)2个元素(B)3个元素(C)4个元素(D)5个元素
5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:
(1)当x∈N时,x∈G;
(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G
证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,
则x=x+0x=a+b∈G,即x∈G
证明(2):∵x∈G,y∈G,
∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)
∴x+y=(a+b)+(c+d)=(a+c)+(b+d)
∵a∈Z,b∈Z,c∈Z,d∈Z
∴(a+c)∈Z,(b+d)∈Z
∴x+y=(a+c)+(b+d)∈G,
又∵=
且不一定都是整数,
∴=不一定属于集合G
四、小结:本节课学习了以下内容:
1.集合的有关概念:(集合、元素、属于、不属于)
2.集合元素的性质:确定性,互异性,无序性
3.常用数集的定义及记法
五、课后作业:
六、板书设计(略)
高中数学考试的技巧
一、整体把握、抓大放小
拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的题目,一定要拿到应得的分数。
二、确定每部分的答题时间
1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。
2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。
三、碰到难题时
1、你可以先用“直觉”最快的找到解题思路;
2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;
3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。
4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。
四、卷面整洁、字迹清楚、注意小节
做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。
高中数学有效的学习方法
一、课后及时回忆
如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。
二、定期重复巩固
即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。
三、科学合理安排
复习一般可以分为集中复习和分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。
一、说教材
(1)说教材的内容和地位
本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。
(2)说教学目标
根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:
1.知识与技能:掌握集合的基本概念及表示方法。了解“属于”关系的意义,掌握集合元素的特征。
2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯,并通过“自主、合作与探究”实现“一切以学生为中心”的理念。
3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的兴趣,由集合的学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。
(3)说教学重点和难点
依据课程标准和学生实际,我确定本课的教学重点为教学重点:集合的基本概念及元素特征。
教学难点:掌握集合元素的三个特征,体会元素与集合的属于关系。
二、说教法和学法
接下来则是说教法、学法。
教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用“生活实例与数学实例”相结合,“师生互动与课堂布白”相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。
总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的`课堂氛围。
三、说教学过程
接着我来说一下最重要的部分,本节课的教学过程:
这节课的流程主要分为六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。
上述六个环节由浅入深,层层递进. 多层次、多角度地加深对概念的理解. 提高学生学习的兴趣,以达到良好的教学效果。
第一环节:创设问题情境,引入目标
课堂开始我将提出两个问题:
问题1:班级有20名男生,16名女生,问班级一共多少人?
问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?
这里我会让学生以小组讨论的形式进行讨论问题,事实上小组合作的形式是本节课主要形式。
待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。
安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。
很自然地进入到第二环节:自主探究让学生阅读教材,并思考下列问题:
(1)有那些概念?
(2)有那些符号?
(3)集合中元素的特性是什么?
安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。
让学生自主探究之后将进入第三环节:讨论辨析
小组合作探究(1)
让学生观察下列实例
(1)1~20以内的所有质数;
(2)所有的正方形;
(3)到直线 的距离等于定长 的所有的点;
(4)方程 的所有实数根;
通过以上实例,辨析概念:
(1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而
集合中的每个对象叫做这个集合的元素。
(2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C?表示,而元素用小
写的拉丁字母a,b,c?表示。
小组合作探究(2)——集合元素的特征
问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?
问题4:某单位所有的“帅哥”能否构成一个集合?由此说明什么?
集合中的元素必须是确定的
问题5:在一个给定的集合中能否有相同的元素?由此说明什么?
集合中的元素是不重复出现的
问题6:咱班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么?
集合中的元素是没有顺序的
我如此设计的意图是因为:问题是数学的心脏,感受问题是学习数学的根本动力。
小组合作探究(3)——元素与集合的关系
问题7:设集合A表示“1~20以内的所有质数”,那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?
问题8:如果元素a是集合A中的元素,我们如何用数学化的语言表达?
a属于集合A,记作a∈A
问题9:如果元素a不是集合A中的元素,我们如何用数学化的语言表达?
a不属于集合A,记作a?A
小组合作探究(4)——常用数集及其表示方法
问题10:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示?
自然数集(非负整数集):记作 N
正整数集:记作 N或 N? 整数集:记作 Z
有理数集:记作 Q 实数集:记作 R
设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。
第四环节:理论迁移 变式训练
1.下列指定的对象,能构成一个集合的是
① 很小的数
② 不超过30的非负实数
③ 直角坐标平面内横坐标与纵坐标相等的点
④ π的近似值
⑤ 所有无理数
A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④
第五环节:课堂小结,自我评价
1.这节课学习的主要内容是什么?
2.这节课主要解释了什么数学思想?
设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统.教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。
第六环节:作业布置,反馈矫正
1.必做题 课本习题1.1—1、2、3。
2.选做题 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a 的值。 设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。
一、教学目标
(一)知识与技能
1.适度让学生亲历集合思想方法的形成过程,初步理解集合知识的意义。
2.让学生借助直观图理解集合图中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。
(二)过程与方法
通过观察、操作、实验、交流、猜测等活动,让学生在合作学习中感知集合图形成过程,体会集合图的优点,能直观看出重复部分,解决生活中的问题。
(三)情感态度与价值观
体验个体与小组合作探究相结合的学习过程,养成勤动脑,乐思考、巧运用的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。
二、教学诊断
“集合问题”是人教版三年级下册第九单元“数学广角”的第一课时,是小学阶段集合思想教学。集合思想对于三年级学生来说并不陌生,在以往的题型中有过接触,只是无意识形成一些简单解决问题的方法。而本节课所要学的是含有重复部分的集合图,学生是第一次接触。教材中的例1通过统计表的方式列出参加踢毽子比赛和跳绳比赛的学生名单,而总人数并不是这两项参赛的人数之和,从而引发学生的认知冲突。教材中是利用集合图(韦恩图)把这两项比赛人数的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材要求只是让学生通过生活中容易理解的题材去初步体会集合思想,能够用自己的方法解决问题,为后继学习打下必要的基础。对于教师应根据学生特点,适度让学生亲历集合图的形成过程,不必拔高要求,引导学生理解集合图各部分的意义,培养学生应用集合思想解决实际问题的能力,初步感受集合思想的奇妙与作用。
三、教学重难点
教学重点:了解集合图的产生过程,利用集合的思想方法解决有重复部分的问题。
教学难点:理解集合图的意义,会解决简单重复问题。
四、教学准备
多媒体课件、小白板、练习题卡
五、教学过程
(一)巧用对比,初悟“重复”
1.观察与比较(课件出示图片)
第一组;父与子
(1)提出问题:有2个爸爸2个儿子,一共有几个人?怎样列式计算?
第一种:无重复情况。
黄明,他的爸爸黄伟光。李玉,他的爸爸李文华。
预设:列式一:2+2=4(人)
第二种:有重复情况。
汪聪,他的爸爸汪立成,汪立成的爸爸汪华东。
列式二:2+2=4(人)4-1=3(人)
师追问:为什么减1?
第二组:小棒拼三角形
(1)3根小棒拼成的一个三角形。
(2)提出问题:摆2个这样的三角形需要几根小棒?
预设:可能会说6根,表示3+3=6(根)
还可能会说5根,表示3+3-1=5(根)
图片出示有重复情况的2个三角形。
教师追问:根据图中摆的方法,哪种列式是正确的?为啥要减1?
2.思考与发现
(课件出示)把2组有重复情况的图片放在一起。
(1)提问:你发现了什么?
学生思考,回答想法。
教师要引导学生突出:
(1)“重叠”或“重复”一词;
(2)列式中“减1”的意义;
(3)能用表达逻辑关系的语言“既…又…”和“或”说出这两个关于重复现象的问题;
(4)师生小结,得出:图片1中有个人既是爸爸又是儿子,他的身份重复了;三角形中有1根小棒是公共边,重复使用了,既是左边三角形的一条边,又是右边三角形的一条边。
教师揭示课题,今天我们研究有重复现象的数学问题。
【设计意图】设计2组简单实例,既有生活中的问题又有数学中的重叠问题,不同角度的对比,共同的理解方法,都从简单数据入手,让学生在计算总数时都不能用直接相加的方法求出总数,引发学生认知冲突,唤醒探究热情,也让学生初识重复问题的基本含义。
(二)善用例题,引入新课
1.情境引入(课件出示“通知”)
(1)了解信息,提出问题
你认为三(1)班要选拔多少名同学参加这两项比赛?
让学生尝试回答参加比赛的总人数。
(2)出示名单,引发认知冲突
课件出示三(1)班参赛学生的名单的统计表,让学生观察。
2.观察名单,验证人数,初悟“重复”
问题:仔细观察过这份报名表,你有什么发现?
让学生根据自己的理解分析,发现有参加两个项目的同学,从而得出“重复”或相近的意思。
【设计意图】根据学生熟悉情境引入,通过具体情况引发矛盾冲突,提出问题,“在参加人数数据较多的情况下,发现重复的人数”,找准教学的起点,调动学生探索的积极性。
(三)合作探究,体验过程
1.策略分析
谈话:你能从这份报名表中一眼就看出有几位同学参加两项比赛?
让学生意识到如果能直观看出重复的同学就不会计算错误的问题,激发学生想重新整理名单的欲望。
借助学具,小组合作,同学间相互交流。教师巡视,个别辅导。
【设计意图】通过分析,让学生认识到要解决重叠问题,就要清楚看出重复部分的数量,从而引发学生操作意识,这时教师放手让学生进行探究,整理,在小组合作中完成。
2.探究方法
(1)选出几种不同作品展示,理解分析不同整理方法。
预设:方法一
方法二:
方法三:
(2)交流不同思想,比较各自的优缺点。
(3)引入韦恩图(集合图),了解集合图中的各标题含义,进行填写。
课件出示:
(4)介绍韦恩,拓宽视野
课件出示:在数学中,经常用平面上封闭曲线的内部代表集合,以及用以表示集合之间关系。这种图称为维恩图(也叫文氏图),是由英国数学家叫维恩发明创造的, 维恩图常用来研究表示数学中的“集合问题”,也叫集合图。
【设计意图】让学生亲历整理过程,在这个过程中通过合作、思考、交流、比较等活动,让学生充分认识到,体现重复部分怎样做到既直观又美观,还能表示每部分的内容。结合各小组展示的优点,引出韦恩图,让学生了解韦恩图的同时,又体会到数学文化的底蕴。
3.辩论感悟
谈话:现在用维恩图来表示各项参赛的人数,与之前的表格比较,它有哪些优点?
让学生感悟集合图能直观看出参加各项运动的人数,尤其是重复参加两项比赛人数的部分很清楚。
4.据图列式,运用集合图
谈话:你了解图中各部分的意义吗?
(1)课件演示各部分,让学生比较正确表述各部分的意义。
(2)利用数据,列式计算出该班参加比赛的人数。
指名学生计算,反馈交流,理解各算式的意义。
可能会出现:8+9-3=14(人);6+3+5=14(人);8-3+9=14(人)9+5=14(人)
【设计意图】让学生借助直观图,理解集合图的意义,并利用集合的思想方法解决简单的实际问题。在不同的策略中感受到解决问题方法的多样性,提高学生思维水平和学习能力。
5.变式练习,内化集合思想课件出示:三(2)参加运动会学生名单(学号表示),根据信息填写集合图中。
教师在引导中要让学生意识到先填写哪部分,再填写哪部分会更好些。
请学生板演,汇报填写的策略,看图理解各部分的意义,计算三(2)班参加比赛的总人数。
师生小结。【设计意图】变式练习是让学生从集合图中会看信息,到会填写集合图的一个数学思想的延伸,也是解决重复问题的关键,是为学生以后解决此类问题打好基础。
(四)巩固应用,建构模型
1.基础性练习
(1)完成教材上105页“做一做”第1题
指导学生把动物的序号填进合适的图中,并请学生说说集合图中各部分的意义
2.趣味性练习
3.拓展性练习
估计三(3)班可能有多少同学参加比赛。
讨论:根据学校要求,每班要选拔9人参加跳绳,8人参加踢毽子比赛,你觉得三(3)班可能会选拔多少人?
判断:参赛的同学最多有17人。( )参赛的同学最少有 8人。( )
小组讨论,全班分析,得出:参赛同学最多是17人,没有人重复;最少有9人,其中8人重复。
【设计意图】设计一组由梯度的练习,从简单应用到开放,从正向思维到逆向思维,既链接所学知识资源,又实现对学生思维的拓展。这样的练习设计不仅能让学生结合集合思想进行分析,还能结合可能性的知识解决问题。
(五)全课总结,呼应课题
师:今天我们认识了用集合图来解决有重复现象的数学问题。这是一种数学思想,叫集合思想。(板书:集合)今天我们利用集合数学思想方法解决一些数学问题,希望同学们以后在学习上能多观察、勤思考,探寻更多的数学奥秘。
1.1 集合含义及其表示
教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。
教学过程:
一、阅读下列语句:
1) 全体自然数0,1,2,3,4,5,
2) 代数式 .
3) 抛物线 上所有的点
4) 今年本校高一(1)(或(2))班的全体学生
5) 本校实验室的所有天平
6) 本班级全体高个子同学
7) 著名的科学家
上述每组语句所描述的对象是否是确定的?
二、1)集合:
2)集合的元素:
3)集合按元素的个数分,可分为1)__________2)_________
三、集合中元素的'三个性质:
1)___________2)___________3)_____________
四、元素与集合的关系:1)____________2)____________
五、特殊数集专用记号:
1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______
4)有理数集______5)实数集_____ 6)空集____
六、集合的表示方法:
1)
2)
3)
七、例题讲解:
例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( )
A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形
例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?
1)地球上的四大洋构成的集合;
2)函数 的全体 值的集合;
3)函数 的全体自变量 的集合;
4)方程组 解的集合;
5)方程 解的集合;
6)不等式 的解的集合;
7)所有大于0且小于10的奇数组成的集合;
8)所有正偶数组成的集合;
例3、用符号 或 填空:
1) ______Q ,0_____N, _____Z,0_____
2) ______ , _____
3)3_____ ,
4)设 , , 则
例4、用列举法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的数
2.图中阴影部分点(含边界)的坐标的集合
课堂练习:
例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________
例7、已知: ,若 中元素至多只有一个,求 的取值范围。
思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。
小结:
作业 班级 姓名 学号
1. 下列集合中,表示同一个集合的是 ( )
A . M= ,N= B. M= ,N=
C. M= ,N= D. M= ,N=
2. M= ,X= ,Y= , , .则 ( )
A . B. C. D.
3. 方程组 的解集是____________________.
4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________.
5. 设集合 A= , B= ,
C= , D= ,E= 。
其中有限集的个数是____________.
6. 设 ,则集合 中所有元素的和为
7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为
8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,
若A= ,试用列举法表示集合B=
9. 把下列集合用另一种方法表示出来:
(1) (2)
(3) (4)
10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。
11. 已知集合A=
(1) 若A中只有一个元素,求a的值,并求出这个元素;
(2) 若A中至多只有一个元素,求a的取值集合。
12.若-3 ,求实数a的值。
【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助!
【教材分析】
重叠问题,学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,所以设计的重叠问题有较简单的,也有一题多法的,还有课后让学生继续研究重叠问题的实践题目,使每个学生各取所需,各有所得,各有所乐,同时培养学生的创造意识和实践能力;又由于重叠问题中各部分之间的关系较复杂和抽象,所以设计让学生在操作学具中领会重叠问题的基本结构,并让他们借助实物图等帮助思考。
【学情分析】
学生从一开始学习数学,其实就已经在运用集合的思想方法了。如学习数数时,把2个三角形用一条封闭的曲线圈起来。而以后学习的平面图形之间的关系都要用到集合的思想。集合是比较系统、抽象的数学思想方法,针对三年级学生的认识水平,应让学生通过生活中容易理解的题材去初步体会集合思想,为后续学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。
【教学目标】
1.通过观察、猜测、操作、交流等活动,让学生在自主探究活动中感知集合图形的`过程,体会集合图的优点,能用集合图分析生活中简单的有重复部分的问题。
2.结合具体情境体会用“韦恩图”解决有重复部分的问题的价值,理解集合图中每部分的含义,能解决简单的有重复部分的`问题。
【教学重难点】
重点:理解集合图的.各部分意义,能用集合图分析生活中简单的有重复部分的问题。
难点:借助直观图解决集合问题。
【教学准备】
课件。
【教学流程】
【情境导入】
1.看电影:两位妈妈和两位女儿一同去看电影,可她们只买了3张票,便顺利地进了电影院,这是为什么?
2.小明排队:小明排队去做操,从前数起小明排第3,从后数起小明排第4,你猜这排小朋友一共有几人?
师:在生活中这种现象很多,我们经常会遇到,今天我们就一起走进数学广角,来研究一下这有趣的重复现象。(板书课题)
【探究新知】
1.巧妙设疑,直观感悟,初步感知重复现象。
(1)调查本班学生参加数学小组、作文小组的情况。
(2)游戏:参加数学小组、作文小组的学生分别站在两个呼啦圈里。
问题:当有同学既参加数学小组,又参加作文小组时怎么站?
引出问题,学生想办法解决。
(3)说说呼啦圈里各部分学生所表示的意思。
2.自主绘图,加深理解。
3.学生汇报交流,逐步整理出简洁明了的直观图(韦恩图)。
师:你们知道吗?这个图是一个名叫韦恩的科学家创造的。你们刚才也像科学家一样,把这个图创造出来了,真了不起!
4.读图训练。教师引导学生用准确的语言表述图中的各种信息。
5.观察图表,算法探究。
师:你们能很快地算出参加数学、作文课外小组的一共有多少人吗?怎样列式?
学生回答列式。
6.比较图与表格,突出韦恩图的优点,肯定学生的科学创造过程。
【巩固应用】
教材第106页练习二十三第1、2、3题。
【课堂小结】
通过今天的学习,你有什么收获?
教学目标:
1.在具体情境中,使学生感受集合的思想,感知集合图的产生过程。
2.能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。
3.渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。
教学重难点:
1.重点: 让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。
2.难点:对重叠部分的理解。
教学准备:课件,名单卡片
教学流程:
(一)创设情景,激趣导入。
(二)探究新知
1. 情景引入,课件出示通知
通知
学校定于下周五举行趣味运动会,请三年级各班选拔
9名同学参加跳绳比赛,8名同学参加踢毽比赛。
校体育组
(1)了解信息。
(2)师:你觉得三(1)班选拔多少人参加这两项比赛?学生尝试回答参加比赛总人数。
2.出示名单,引发认知冲突
(1)课件出示三(1)班学生参加跳绳、踢毽比赛学生名单。
(2)学生观察,你有什么发现?总人数是17人吗?
(3)有没有什么办法能让大家很快看出哪些人两项比赛都参加了?
3.合作探究,体验过程
(1)学生小组内讨论交流,可以借助图、表或其他方式。
(2)汇报交流。
4.介绍韦恩图
(1)介绍韦恩图的来历。
(2)结合例题明确每一部分表示的含义。指生说一说。
5.想一想,可以怎样列式解答?
生尝试列式,全班交流。讲清算式的含义。
6.估计:咱们班可能选拔多少人参加这两项比赛?
(三)巩固练习
(四)全课小结 这节课你有什么收获?
板书设计:
一、说教材
《数学广角》是教材中新增设的一个内容,它主要是介绍和渗透一些数学思想方法尝试把重要的数学思想方法通过学生可以理解的简单形式采用生动有趣的事例呈现出来。本节课涉及的重叠问题是日常生活中应用比较广泛的数学知识。在本节课前学生虽然已经学习过分类的思想方法,但集合这部分内容比较抽象。
针对三年级学生的认知水平,在这里只是让学生通过生活中容易理解的题材去初步体会集合思想为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。
综上分析本课的教学目标定位为:
二、说教学目标
1、学会借助直观图,利用集合图的思想方法解决简单的问题。
2、掌握解决重叠问题的基本策略体验解决问题策略的多样性。
3、培养学生善于观察、善于思考养成良好的学习习惯。
三、说教学重、难点
经历集合产生的过程并学会用集合来解决实际问题。
四、说教学策略
"重叠问题"在日常生活中应用比较广泛具有浓浓的"生活味".确定教学内容及目标后,该采用怎样的教学方式去达成目标?经过多方面考虑最后确定了我的教学思路。以"认知冲突设疑导入探究新知感悟韦恩图解决问题运用韦恩图"为结构。以"冲突思考交流验证"为教法,力求在老师的引导下自主探究,让学生借助直观图体会、理解重叠问题各部分的关系,正确解答重叠现象中的相关数量关系,在探究生活中重叠问题的过程中,利用生活事例让学生感受数学与生活的密切联系体验到数学与生活的联系,激发学习数学的兴趣,感悟到数学的价值,渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。
五、说教学过程
(一)、激情导课
1、创设情境,激发兴趣。
脑筋急转弯:
(1)两个爸爸和两个儿子一起去看电影,他们只买了3张票就顺利进了电影院。这是为什么呢?
(2)昨天,郎老师到超市去买东西,在付款的时候,从前往后数我排在第3,从后往前数,我排在第4.这时,一共有多少人在排队付款?
学生活动:学生猜测各种可能性,你一言我一语地发表自己的高见。
兴趣是的最好老师,探索是成功的基石。通过学生喜爱的脑筋急转弯引入,激发了学生无限的学习兴趣,同时引导学生大胆的猜想,让学生在猜测中学会思考,在争论中学会倾听、学会交流、学会整合。领悟问题存在的'根源——重复。
(二)民主导学
任务一、游戏中明算理:
(1)、报名参加学校组织的兴趣小组:语文和数学
(2)、游戏:
为了能使同学们更方便地看清楚,我们来做一项活动:请报名参加语文的同学站到讲台的左边,报名参加数学的同学站到讲台的右边。(参与报名的学生活动,站到相应的位置)
让学生站起来,走出座位,站到相应的位置中去,打破了传统的学生只能坐在座位上听讲的教学方式,台上的同学有了展示自己的机会,台下的同学也兴趣盎然,参与度更高了。一个个高举着小手,迫不及待的想要表达自己的想法。
(3)、画一画
学生动手试着画图,片刻,有同学欢呼起来了:"老师,我画出来了"说着,高举着自己创作的画,向全班同学展示了起来。指名上黑板画。当学生产生认知冲突后画好后说一说为什么这样圈,每一部分代表什么,从而自然引出韦恩图接着演示每一部分的意义,让学生用语言表述图意,使本节课的难点悄然解决。接着根据学生观察韦恩图得出的信息,引导学生从图的形式转化成算式的形式,从而解决了"初步学会利用交集的含义解决简单的实际问题"这一重点。学生是学习的主体,整个环节完全是让学生经历自己创造韦恩图的过程。学生在快乐的合作探究中体验到了成功的喜悦。
苏霍姆林斯基说了这样一句话,"当知识与积极的活动紧密联系在一起的时候,学习才能成为孩子精神生活的一部分".在画一画的过程中,学生体脑结合,手脑并用,共同交流、思考,经历了创作韦恩图的过程,得到了成功的体验。也从中感受到了愉悦、轻松、快活。他们的兴趣、爱好和个性特长得以充分发挥,发现问题、解决问题的能力得以进一步发展。
任务二,利用集合图来解决问题
让学生在解决问题的过程中感受到用韦恩图来解决问题的价值,从而掌握使用集合图解决重叠问题的方法。
1、任务呈现:读图训练。让学生看书例1的集合图,通过观察让学生找出数学信息,提出相关问题并进行解答。
2、自主学习,完成课堂任务单
3、展示交流。
(三)检测导结
1、课本105页1题。
2、三年级(2)班的部分同学参加"秋季运动会",其中参加跳绳比赛的有22人,参加跑步比赛的有28人,两项都参加的有10人,共有多少人参加比赛?
六、说教学效果
本节课是在找准了学生的认知起点和困惑点的基础上,寻找了一条符合学生学习的有效教学途径。首先从学生喜爱的生活情境出发导入新课,唤醒学生已有的知识经验;在探究的过程中,让学生已有的知识经验为学习新知识服务。教师只有课前知学,然后才能知教。然而怎样去知学?又怎样去知教?是需要课前花足时间去思考的事。
数学课不仅是让学生学数学,更重要的是让学生欣赏数学、体验数学的神奇价值,从欣赏和体验中去感悟数学道理、培养数学素养。本节课学生在活动的参与中,真正的作到了自主探索、不断创造,体验到了数学学习的快乐与成功。
教学目标:
1.使学生理解集合的含义,知道常用集合及其记法;
2.使学生初步了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;
3.使学生初步掌握集合的表示方法,并能正确地表示一些简单的集合.
教学重点:
集合的含义及表示方法.
教学过程:
一、问题情境
1.情境.
新生自我介绍:介绍家庭、原毕业学校、班级.
2.问题.
在介绍的过程中,常常涉及像家庭、学校、班级、男生、女生等概念,这些概念与学生相比,它们有什么共同的特征?
二、学生活动
1.介绍自己;
2.列举生活中的集合实例;
3.分析、概括各集合实例的共同特征.
三、数学建构
1.集合的含义:一般地,一定范围内不同的、确定的对象的全体组成一个集合.构成集合的每一个个体都叫做集合的一个元素.
2.元素与集合的关系及符号表示:属于,不属于.
3.集合的表示方法:
另集合一般可用大写的拉丁字母简记为集合A、集合B.
4.常用数集的记法:自然数集N,正整数集N*,整数集Z,有理数集Q,实数集R.
5.有限集,无限集与空集.
6.有关集合知识的历史简介.
四、数学运用
1.例题.
例1 表示出下列集合:
(1)中国的直辖市;(2)中国国旗上的.颜色.
小结:集合的确定性和无序性
例2 准确表示出下列集合:
(1)方程x2―2x-3=0的解集;
(2)不等式2-x0的解集;
(3)不等式组 的解集;
(4)不等式组 2x-1-33x+10的解集.
解:略.
小结:(1)集合的表示方法列举法与描述法;
(2)集合的分类有限集⑴,无限集⑵与⑶,空集⑷
例3 将下列用描述法表示的集合改为列举法表示:
(1){(x,y)| x+y = 3,x N,y N }
(2){(x,y)| y = x2-1,|x |2,x Z }
(3){y| x+y = 3,x N,y N }
(4){ x R | x3-2x2+x=0}
小结:常用数集的记法与作用.
例4 完成下列各题:
(1)若集合A={ x|ax+1=0}=,求实数a的值;
(2)若-3{ a-3,2a-1,a2-4},求实数a.
小结:集合与元素之间的关系.
2.练习:
(1)用列举法表示下列集合:
①{ x|x+1=0};
②{ x|x为15的正约数};
③{ x|x 为不大于10的正偶数};
④{(x,y)|x+y=2且x-2y=4};
⑤{(x,y)|x{1,2},y{1,3}};
⑥{(x,y)|3x+2y=16,xN,yN}.
(2)用描述法表示下列集合:
①奇数的集合;②正偶数的集合;③{1,4,7,10,13}
五、回顾小结
(1)集合的概念集合、元素、属于、不属于、有限集、无限集、空集;
(2)集合的表示列举法、描述法以及Venn图;
(3)集合的元素与元素的个数;
(4)常用数集的记法.